Evaluation of Fatigue Crack Growth Characteristics on Stainless Steel SS 316 LN Using Acoustic Emission Technique

R. Prakash, M. Thomas
{"title":"Evaluation of Fatigue Crack Growth Characteristics on Stainless Steel SS 316 LN Using Acoustic Emission Technique","authors":"R. Prakash, M. Thomas","doi":"10.1115/IMECE2020-23751","DOIUrl":null,"url":null,"abstract":"\n Results of online acoustic emission (AE) monitoring during fatigue crack growth rate (FCGR) experiments on a stainless steel SS 316 LN are presented in this paper. Two specimen geometries — viz., standard compact tension (C(T)) specimens as well as side-grooved C(T) specimens were considered for experiments at ambient temperature and at 600°C (873K). There is a good correspondence between crack length increment and the increase in AE cumulative count and cumulative energy during the experiments. The side grove introduced on the thickness direction of the test specimen constrains the plastic zone ahead of the crack tip, thereby enforcing plane strain conditions at the crack. Reduced AE activity at initial stages of crack growth was observed for side grooved samples. The transition to Stage-II crack growth was observed using acoustic emission (AE) technique which otherwise was not visible from the fatigue crack growth plot.\n The work further attempts to correlate the AE parameters obtained during elevated temperature (873K) fatigue crack growth in stainless steel. For the purpose of acquiring AE signals outside the heated zone, a waveguide was used to transmit the acoustic waves from the specimen at high temperature. A correlation between crack advance and AE parameters was obtained from the elevated temperature tests.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-23751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Results of online acoustic emission (AE) monitoring during fatigue crack growth rate (FCGR) experiments on a stainless steel SS 316 LN are presented in this paper. Two specimen geometries — viz., standard compact tension (C(T)) specimens as well as side-grooved C(T) specimens were considered for experiments at ambient temperature and at 600°C (873K). There is a good correspondence between crack length increment and the increase in AE cumulative count and cumulative energy during the experiments. The side grove introduced on the thickness direction of the test specimen constrains the plastic zone ahead of the crack tip, thereby enforcing plane strain conditions at the crack. Reduced AE activity at initial stages of crack growth was observed for side grooved samples. The transition to Stage-II crack growth was observed using acoustic emission (AE) technique which otherwise was not visible from the fatigue crack growth plot. The work further attempts to correlate the AE parameters obtained during elevated temperature (873K) fatigue crack growth in stainless steel. For the purpose of acquiring AE signals outside the heated zone, a waveguide was used to transmit the acoustic waves from the specimen at high temperature. A correlation between crack advance and AE parameters was obtained from the elevated temperature tests.
声发射技术评价不锈钢ss316ln疲劳裂纹扩展特性
本文介绍了不锈钢ss316ln疲劳裂纹扩展速率在线声发射监测结果。在环境温度和600°C (873K)下的实验中,考虑了两种试样几何形状-即标准紧绷(C(T))试样和侧槽C(T)试样。实验过程中,裂纹长度增量与声发射累计次数和累积能量的增加有较好的对应关系。在试件厚度方向上引入的侧凹槽约束了裂纹尖端前方的塑性区,从而加强了裂纹处的平面应变条件。侧槽试样裂纹扩展初期声发射活性降低。利用声发射(AE)技术观察了向ii阶段裂纹扩展的过渡,否则在疲劳裂纹扩展图中无法看到。该工作进一步尝试将不锈钢在高温(873K)疲劳裂纹扩展过程中获得的声发射参数联系起来。为了获取受热区外的声发射信号,采用波导传输高温下试样的声波。通过高温试验,得到了裂纹扩展与声发射参数的相关关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信