{"title":"PCPATCH","authors":"P. Farrell, M. Knepley, L. Mitchell, F. Wechsung","doi":"10.1145/3445791","DOIUrl":null,"url":null,"abstract":"Effective relaxation methods are necessary for good multigrid convergence. For many equations, standard Jacobi and Gauß–Seidel are inadequate, and more sophisticated space decompositions are required; examples include problems with semidefinite terms or saddle point structure. In this article, we present a unifying software abstraction, PCPATCH, for the topological construction of space decompositions for multigrid relaxation methods. Space decompositions are specified by collecting topological entities in a mesh (such as all vertices or faces) and applying a construction rule (such as taking all degrees of freedom in the cells around each entity). The software is implemented in PETSc and facilitates the elegant expression of a wide range of schemes merely by varying solver options at runtime. In turn, this allows for the very rapid development of fast solvers for difficult problems.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"40 1","pages":"1 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3445791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
Effective relaxation methods are necessary for good multigrid convergence. For many equations, standard Jacobi and Gauß–Seidel are inadequate, and more sophisticated space decompositions are required; examples include problems with semidefinite terms or saddle point structure. In this article, we present a unifying software abstraction, PCPATCH, for the topological construction of space decompositions for multigrid relaxation methods. Space decompositions are specified by collecting topological entities in a mesh (such as all vertices or faces) and applying a construction rule (such as taking all degrees of freedom in the cells around each entity). The software is implemented in PETSc and facilitates the elegant expression of a wide range of schemes merely by varying solver options at runtime. In turn, this allows for the very rapid development of fast solvers for difficult problems.