{"title":"Printed Capacitive Pressure Sensor with Enhanced Sensitivity through a Layered PDMS/BaTiO3 Structure","authors":"Wenxin Wu, Kevin Schnittker, J. Andrews","doi":"10.1109/SENSORS47087.2021.9639486","DOIUrl":null,"url":null,"abstract":"Printable electronics have demonstrated significant promise in enabling soft tactile sensing systems. This paper presents a fully printed and soft capacitive pressure sensor realized through a two-dimensional interdigitated capacitor. The sensor transduces applied pressures through a fringing electric field interacting with a deformable elastomer. The deformable elastomer consists of either pure polydimethylsiloxane (PDMS) or a layered PDMS/BaTiO3 structure. A 10 mm overlaid layered structure is created by depositing six alternating layers of a Barium Titanate-PDMS mixture and pure PDMS, followed by a 4 mm PDMS layer on the printed electrode. Multiple tests using standardized pressure and capacitance measurements have been performed to measure and compare the sensitivity between pure PDMS and PDMS/BaTiO3 layered configuration. The capacitive response shows that the layered PDMS/BaTiO3 device enhances the sensitivity for pressures less than 1 kPa by approximately 10x. This work demonstrates the potential of a printed electronic sensor in measuring small-scale pressure variation using inexpensive and simple fabrication methods.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"14 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Printable electronics have demonstrated significant promise in enabling soft tactile sensing systems. This paper presents a fully printed and soft capacitive pressure sensor realized through a two-dimensional interdigitated capacitor. The sensor transduces applied pressures through a fringing electric field interacting with a deformable elastomer. The deformable elastomer consists of either pure polydimethylsiloxane (PDMS) or a layered PDMS/BaTiO3 structure. A 10 mm overlaid layered structure is created by depositing six alternating layers of a Barium Titanate-PDMS mixture and pure PDMS, followed by a 4 mm PDMS layer on the printed electrode. Multiple tests using standardized pressure and capacitance measurements have been performed to measure and compare the sensitivity between pure PDMS and PDMS/BaTiO3 layered configuration. The capacitive response shows that the layered PDMS/BaTiO3 device enhances the sensitivity for pressures less than 1 kPa by approximately 10x. This work demonstrates the potential of a printed electronic sensor in measuring small-scale pressure variation using inexpensive and simple fabrication methods.