Andrea Rossi, Andrea Visentin, S. Prestwich, Kenneth N. Brown
{"title":"Bayesian Uncertainty Modelling for Cloud Workload Prediction","authors":"Andrea Rossi, Andrea Visentin, S. Prestwich, Kenneth N. Brown","doi":"10.1109/CLOUD55607.2022.00018","DOIUrl":null,"url":null,"abstract":"Providers of cloud computing systems need to manage resources carefully to meet the desired Quality of Service and reduce waste due to overallocation. An accurate prediction of future demand is crucial to allocate resources to service requests without excessive delays. Current state-of-the-art methods such as Long Short-Term Memory-based models make only point forecasts of demand without considering the uncertainty in their predictions. Forecasting a distribution would provide a more comprehensive picture and inform resource scheduler decisions. We investigate Bayesian Neural Networks and deep learning models to predict workload distribution and evaluate them on the time series forecasting of CPU and memory workload of 8 clusters on the Google Cloud data centre. Experiments show that the proposed models provide accurate demand prediction and better estimations of resource usage bounds, reducing overprediction and total predicted resources, while avoiding underprediction. These approaches have good runtime performance making them applicable for practitioners.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"1 1","pages":"19-29"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3
Abstract
Providers of cloud computing systems need to manage resources carefully to meet the desired Quality of Service and reduce waste due to overallocation. An accurate prediction of future demand is crucial to allocate resources to service requests without excessive delays. Current state-of-the-art methods such as Long Short-Term Memory-based models make only point forecasts of demand without considering the uncertainty in their predictions. Forecasting a distribution would provide a more comprehensive picture and inform resource scheduler decisions. We investigate Bayesian Neural Networks and deep learning models to predict workload distribution and evaluate them on the time series forecasting of CPU and memory workload of 8 clusters on the Google Cloud data centre. Experiments show that the proposed models provide accurate demand prediction and better estimations of resource usage bounds, reducing overprediction and total predicted resources, while avoiding underprediction. These approaches have good runtime performance making them applicable for practitioners.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)