On the clique number of noisy random geometric graphs

Pub Date : 2022-08-22 DOI:10.1002/rsa.21134
Matthew Kahle, Minghao Tian, Yusu Wang
{"title":"On the clique number of noisy random geometric graphs","authors":"Matthew Kahle, Minghao Tian, Yusu Wang","doi":"10.1002/rsa.21134","DOIUrl":null,"url":null,"abstract":"Let Gn$$ {G}_n $$ be a random geometric graph, and then for q,p∈[0,1)$$ q,p\\in \\left[0,1\\right) $$ we construct a (q,p)$$ \\left(q,p\\right) $$ ‐perturbed noisy random geometric graph Gnq,p$$ {G}_n^{q,p} $$ where each existing edge in Gn$$ {G}_n $$ is removed with probability q$$ q $$ , while and each non‐existent edge in Gn$$ {G}_n $$ is inserted with probability p$$ p $$ . We give asymptotically tight bounds on the clique number ωGnq,p$$ \\omega \\left({G}_n^{q,p}\\right) $$ for several regimes of parameter.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let Gn$$ {G}_n $$ be a random geometric graph, and then for q,p∈[0,1)$$ q,p\in \left[0,1\right) $$ we construct a (q,p)$$ \left(q,p\right) $$ ‐perturbed noisy random geometric graph Gnq,p$$ {G}_n^{q,p} $$ where each existing edge in Gn$$ {G}_n $$ is removed with probability q$$ q $$ , while and each non‐existent edge in Gn$$ {G}_n $$ is inserted with probability p$$ p $$ . We give asymptotically tight bounds on the clique number ωGnq,p$$ \omega \left({G}_n^{q,p}\right) $$ for several regimes of parameter.
分享
查看原文
噪声随机几何图的团数
设Gn $$ {G}_n $$为随机几何图,然后对于q,p∈[0,1)$$ q,p\in \left[0,1\right) $$,我们构造一个(q,p) $$ \left(q,p\right) $$‐摄动噪声随机几何图Gnq,p $$ {G}_n^{q,p} $$,其中Gn $$ {G}_n $$中每条存在的边以概率q $$ q $$被移除,而Gn $$ {G}_n $$中每条不存在的边以概率p $$ p $$被插入。我们给出了若干参数区团数ωGnq,p $$ \omega \left({G}_n^{q,p}\right) $$的渐近紧界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信