Experimental analysis of nonlinear piezo-electromagnetic composite human energy harvester

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qingling Zhao, Shi Liu, Huaqiang Zhang, Chongqiu Yang, Hui Shen, R. Song
{"title":"Experimental analysis of nonlinear piezo-electromagnetic composite human energy harvester","authors":"Qingling Zhao, Shi Liu, Huaqiang Zhang, Chongqiu Yang, Hui Shen, R. Song","doi":"10.1177/1045389x231194986","DOIUrl":null,"url":null,"abstract":"To better harvest the kinetic energy of the human and broaden the energy harvest frequency band, a nonlinear piezo-electromagnetic composite human energy harvester (NPE-HEH) is proposed. A magnetic repulsion force between the two groups of magnets makes the energy harvester nonlinear. The excitation experiment and the actual experiment of the human are carried out for the harvester. The excitation experiment results show that there is an optimal resistance value of the harvester to maximize the output power value. When the excitation acceleration is 0.4 g and the excitation frequency is 9 Hz, the output voltage value and the output power of the electromagnetic part of the energy harvester are 0.86 V and 2.47 mW respectively, and the output performance is excellent. When the energy harvester is installed in a backpack with a moving speed of 9 km/h, it can generate 0.7 mW of power. When the energy harvester is placed on the leg, the output performance is good and the output power can reach 1.3 mW. The energy harvester can efficiently harvest energy at low frequencies. This harvester is efficient at low frequencies, compact in size, and easy to carry, making it highly suitable for human vibration energy harvesting applications.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x231194986","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To better harvest the kinetic energy of the human and broaden the energy harvest frequency band, a nonlinear piezo-electromagnetic composite human energy harvester (NPE-HEH) is proposed. A magnetic repulsion force between the two groups of magnets makes the energy harvester nonlinear. The excitation experiment and the actual experiment of the human are carried out for the harvester. The excitation experiment results show that there is an optimal resistance value of the harvester to maximize the output power value. When the excitation acceleration is 0.4 g and the excitation frequency is 9 Hz, the output voltage value and the output power of the electromagnetic part of the energy harvester are 0.86 V and 2.47 mW respectively, and the output performance is excellent. When the energy harvester is installed in a backpack with a moving speed of 9 km/h, it can generate 0.7 mW of power. When the energy harvester is placed on the leg, the output performance is good and the output power can reach 1.3 mW. The energy harvester can efficiently harvest energy at low frequencies. This harvester is efficient at low frequencies, compact in size, and easy to carry, making it highly suitable for human vibration energy harvesting applications.
非线性压电电磁复合人体能量采集器的实验分析
为了更好地采集人体动能,拓宽能量采集频带,提出了一种非线性压电电磁复合人体能量采集器(NPE-HEH)。两组磁体之间的磁斥力使能量采集器非线性。对收割机进行了激励实验和人体实际实验。励磁实验结果表明,该收割机存在一个最佳电阻值,使输出功率值最大化。当激励加速度为0.4 g,激励频率为9 Hz时,能量采集器电磁部分的输出电压值为0.86 V,输出功率为2.47 mW,输出性能优良。当能量采集器以9公里/小时的移动速度安装在背包中时,它可以产生0.7兆瓦的电力。当能量采集器放置在腿上时,输出性能良好,输出功率可达1.3 mW。能量采集器可以有效地收集低频能量。这种收割机在低频时效率高,体积小巧,便于携带,非常适合人体振动能量收集应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信