{"title":"Materials Properties and Manufacturing Processes","authors":"Liping Wang","doi":"10.30919/esmm5f616","DOIUrl":null,"url":null,"abstract":"Materials properties highly depend on the manufacturing processes. In this issue, nine recent studies reported on how to understand and improve the (i.e., optical, mechanical, thermal, piezoelectric, etc) with the manufacturing processes for different applications. Sun et al. (doi: 10.30919/esmm5f605) provided a comphrensive review on the recent progress in hot embossing of polymer materials for micro/nanoscale manufacturing, including plate-to-plate, roll-to-plate, and roll-to-roll forms. Research in simulation and mold fabrication for hot embossing were discussed, the various applications of polymer processing were highlighted with systematic catalogs, and challenges and future directions were outlooked. In the area of piezoelectrics, polyvinylidene fluoride (PVDF) attracts much attention for energy harvesting because of its superior elastic properties, high flexibility and low cost. In the work by Han et al. (doi: 10.30919/esmm5f612), they developed a novel approach to increase the -phase concentration of electrospun PVDF nanofibers β during the manufacturing process. With comprehensive materials characterizations with SEM, Energy Dispersive X-ray, and infrared spectroscopy, they found that high-quality PVDF fibers can be obtained by high molecular weight with electrospinning, and confirmed the improved polarization of PVDF fibers with zinc oxide nanoparticle dopants. Wu el al. (doi: 10.30919/esmm5f601) demonstrated the improved interlaminar shear strength by 28.4% and impact toughness by 53.3% of carbon fibers unsaturated polyester composites by a vinyl ester sizing agent containing vinyl-functional carbon nanotubes. After studying the surface characteristics and interfacial properties of the composites before and after treated with the sizing agent, the improved wettability, chemical bonding and mechanical interlocking were found to be associated with the enhanced interfacial adhesion by the sizing agent. In the communication by Tian et al. (doi: 10.30919/esmm5f603), the microwave dielectric properties of Li Mg Zr O ceramics prepared 6 7 3 16","PeriodicalId":11851,"journal":{"name":"ES Materials & Manufacturing","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ES Materials & Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30919/esmm5f616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Materials properties highly depend on the manufacturing processes. In this issue, nine recent studies reported on how to understand and improve the (i.e., optical, mechanical, thermal, piezoelectric, etc) with the manufacturing processes for different applications. Sun et al. (doi: 10.30919/esmm5f605) provided a comphrensive review on the recent progress in hot embossing of polymer materials for micro/nanoscale manufacturing, including plate-to-plate, roll-to-plate, and roll-to-roll forms. Research in simulation and mold fabrication for hot embossing were discussed, the various applications of polymer processing were highlighted with systematic catalogs, and challenges and future directions were outlooked. In the area of piezoelectrics, polyvinylidene fluoride (PVDF) attracts much attention for energy harvesting because of its superior elastic properties, high flexibility and low cost. In the work by Han et al. (doi: 10.30919/esmm5f612), they developed a novel approach to increase the -phase concentration of electrospun PVDF nanofibers β during the manufacturing process. With comprehensive materials characterizations with SEM, Energy Dispersive X-ray, and infrared spectroscopy, they found that high-quality PVDF fibers can be obtained by high molecular weight with electrospinning, and confirmed the improved polarization of PVDF fibers with zinc oxide nanoparticle dopants. Wu el al. (doi: 10.30919/esmm5f601) demonstrated the improved interlaminar shear strength by 28.4% and impact toughness by 53.3% of carbon fibers unsaturated polyester composites by a vinyl ester sizing agent containing vinyl-functional carbon nanotubes. After studying the surface characteristics and interfacial properties of the composites before and after treated with the sizing agent, the improved wettability, chemical bonding and mechanical interlocking were found to be associated with the enhanced interfacial adhesion by the sizing agent. In the communication by Tian et al. (doi: 10.30919/esmm5f603), the microwave dielectric properties of Li Mg Zr O ceramics prepared 6 7 3 16