{"title":"kNN Hashing with Factorized Neighborhood Representation","authors":"Kun Ding, Chunlei Huo, Bin Fan, Chunhong Pan","doi":"10.1109/ICCV.2015.131","DOIUrl":null,"url":null,"abstract":"Hashing is very effective for many tasks in reducing the processing time and in compressing massive databases. Although lots of approaches have been developed to learn data-dependent hash functions in recent years, how to learn hash functions to yield good performance with acceptable computational and memory cost is still a challenging problem. Based on the observation that retrieval precision is highly related to the kNN classification accuracy, this paper proposes a novel kNN-based supervised hashing method, which learns hash functions by directly maximizing the kNN accuracy of the Hamming-embedded training data. To make it scalable well to large problem, we propose a factorized neighborhood representation to parsimoniously model the neighborhood relationships inherent in training data. Considering that real-world data are often linearly inseparable, we further kernelize this basic model to improve its performance. As a result, the proposed method is able to learn accurate hashing functions with tolerable computation and storage cost. Experiments on four benchmarks demonstrate that our method outperforms the state-of-the-arts.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"6 1","pages":"1098-1106"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Hashing is very effective for many tasks in reducing the processing time and in compressing massive databases. Although lots of approaches have been developed to learn data-dependent hash functions in recent years, how to learn hash functions to yield good performance with acceptable computational and memory cost is still a challenging problem. Based on the observation that retrieval precision is highly related to the kNN classification accuracy, this paper proposes a novel kNN-based supervised hashing method, which learns hash functions by directly maximizing the kNN accuracy of the Hamming-embedded training data. To make it scalable well to large problem, we propose a factorized neighborhood representation to parsimoniously model the neighborhood relationships inherent in training data. Considering that real-world data are often linearly inseparable, we further kernelize this basic model to improve its performance. As a result, the proposed method is able to learn accurate hashing functions with tolerable computation and storage cost. Experiments on four benchmarks demonstrate that our method outperforms the state-of-the-arts.