{"title":"Ultrasound Promoted One-Pot Multicomponent Synthesis of Highly Functionalized Tetrahydropyridine Derivatives","authors":"","doi":"10.1080/10406638.2023.2242554","DOIUrl":null,"url":null,"abstract":"<div><p>The N-methyl pyridinium tosylate (NMPyTs) ionic liquid is used as an efficient, homogeneous, and recyclable catalyst for the synthesis of tetrahydropyridine derivatives via one-pot multi-component condensation of aromatic aldehyde, anilines, and <em>β</em>-ketoesters under ultrasonic irradiations. This protocol was successfully pertinent to a wide range of structurally diverse aromatic aldehydes, substituted anilines, and <em>β</em>-ketoesters. The major characteristics of this technique include operational simplicity, short reaction times, mild reaction conditions, and high yield. Importantly, NMPyTs can undergo up to three recycle runs without any noticeable loss of catalytic activity.</p></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polycyclic Aromatic Compounds","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1040663823019668","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The N-methyl pyridinium tosylate (NMPyTs) ionic liquid is used as an efficient, homogeneous, and recyclable catalyst for the synthesis of tetrahydropyridine derivatives via one-pot multi-component condensation of aromatic aldehyde, anilines, and β-ketoesters under ultrasonic irradiations. This protocol was successfully pertinent to a wide range of structurally diverse aromatic aldehydes, substituted anilines, and β-ketoesters. The major characteristics of this technique include operational simplicity, short reaction times, mild reaction conditions, and high yield. Importantly, NMPyTs can undergo up to three recycle runs without any noticeable loss of catalytic activity.
期刊介绍:
The purpose of Polycyclic Aromatic Compounds is to provide an international and interdisciplinary forum for all aspects of research related to polycyclic aromatic compounds (PAC). Topics range from fundamental research in chemistry (including synthetic and theoretical chemistry) and physics (including astrophysics), as well as thermodynamics, spectroscopy, analytical methods, and biology to applied studies in environmental science, biochemistry, toxicology, and industry. Polycyclic Aromatic Compounds has an outstanding Editorial Board and offers a rapid and efficient peer review process, as well as a flexible open access policy.