Effect of CaF2 on the aggregation and growth of ferronickel particles in the self-reduction of Nickel laterite ore

IF 1.1 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING
G. Hang, Z. Xue, Yingjiang Wu, Bo Zhang
{"title":"Effect of CaF2 on the aggregation and growth of ferronickel particles in the self-reduction of Nickel laterite ore","authors":"G. Hang, Z. Xue, Yingjiang Wu, Bo Zhang","doi":"10.1051/metal/2021050","DOIUrl":null,"url":null,"abstract":"Increasing attention is being paid to the self-reduction and magnetic separation of nickel laterite ore because of economic and efficiency advantages. The aggregation and growth of ferronickel particles during the reduction process is an important factor for subsequent magnetic separation. In this study, the effect of CaF2 on ferronickel particle aggregation and growth during the self-reduction of nickel laterite ore was investigated by visual data analysis of ferronickel particles. The recovery and grade of Ni and Fe from the self-reduction, fine grinding, and magnetic separation of nickel laterite ore under the strengthening action of CaF2 were measured. Increasing CaF2 addition yielded a significant increase in the average particle size of ferronickel particles and an increased recovery of a higher grade of Ni. A ferronickel concentrate with 7.1 wt% Ni and 68.5 wt% Fe was obtained at a Ni recovery of 84.14% in the presence of 8 wt% CaF2. CaF2 accelerates the aggregation and growth of ferronickel particles, which promotes the separation of the ferronickel alloy from the gangue in the magnetic separation process.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"8 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021050","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 3

Abstract

Increasing attention is being paid to the self-reduction and magnetic separation of nickel laterite ore because of economic and efficiency advantages. The aggregation and growth of ferronickel particles during the reduction process is an important factor for subsequent magnetic separation. In this study, the effect of CaF2 on ferronickel particle aggregation and growth during the self-reduction of nickel laterite ore was investigated by visual data analysis of ferronickel particles. The recovery and grade of Ni and Fe from the self-reduction, fine grinding, and magnetic separation of nickel laterite ore under the strengthening action of CaF2 were measured. Increasing CaF2 addition yielded a significant increase in the average particle size of ferronickel particles and an increased recovery of a higher grade of Ni. A ferronickel concentrate with 7.1 wt% Ni and 68.5 wt% Fe was obtained at a Ni recovery of 84.14% in the presence of 8 wt% CaF2. CaF2 accelerates the aggregation and growth of ferronickel particles, which promotes the separation of the ferronickel alloy from the gangue in the magnetic separation process.
CaF2对红土镍矿自还原过程中镍铁颗粒聚集生长的影响
红土镍矿的自还原磁选因其经济和效率的优势而日益受到人们的重视。铁镍颗粒在还原过程中的聚集和生长是后续磁分离的重要因素。通过对镍铁颗粒的可视化数据分析,研究了CaF2对红土镍矿自还原过程中镍铁颗粒聚集和生长的影响。对红土镍矿在CaF2强化作用下的自还原、细磨、磁选过程中Ni、Fe的回收率和品位进行了测定。增加CaF2的添加量可以显著提高镍铁颗粒的平均粒径,并提高较高品位镍的回收率。在8 wt% CaF2存在下,获得了镍含量为7.1 wt%、铁含量为68.5 wt%、镍回收率为84.14%的镍铁精矿。CaF2加速了铁镍颗粒的聚集和生长,促进了铁镍合金在磁选过程中与脉石的分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信