Rajan Pasupathi, Arya Kumar Bedabrata Chand, María Antonia Navascués, María Victoria Sebastián
{"title":"Cyclic generalized iterated function systems","authors":"Rajan Pasupathi, Arya Kumar Bedabrata Chand, María Antonia Navascués, María Victoria Sebastián","doi":"10.1002/cmm4.1202","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce the notion of cyclic generalized iterated function system (GIFS), which is a family of functions <math>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>…</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>M</mi>\n </mrow>\n </msub>\n <mo>:</mo>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msup>\n <mo>→</mo>\n <mi>X</mi>\n </mrow></math>, where each <math>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </mrow></math> is a cyclic generalized <math>\n <mrow>\n <mi>φ</mi>\n </mrow></math>-contraction (contractive) map on a collection of subsets <math>\n <mrow>\n <msubsup>\n <mrow>\n <mo>{</mo>\n <msub>\n <mrow>\n <mi>B</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msubsup>\n </mrow></math> of a complete metric space <math>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow></math> respectively, and <math>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow></math> are natural numbers. When <math>\n <mrow>\n <msub>\n <mrow>\n <mi>B</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>…</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow></math> are closed subsets of <i>X</i>, we show the existence of attractor of this cyclic GIFS, and investigate its properties. Further, we extend our ideas to cyclic countable GIFS.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1202","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
In this article, we introduce the notion of cyclic generalized iterated function system (GIFS), which is a family of functions , where each is a cyclic generalized -contraction (contractive) map on a collection of subsets of a complete metric space respectively, and are natural numbers. When are closed subsets of X, we show the existence of attractor of this cyclic GIFS, and investigate its properties. Further, we extend our ideas to cyclic countable GIFS.