On the homotopy type of the space of metrics of positive scalar curvature

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Johannes Ebert, M. Wiemeler
{"title":"On the homotopy type of the space of metrics of positive scalar curvature","authors":"Johannes Ebert, M. Wiemeler","doi":"10.4171/JEMS/1333","DOIUrl":null,"url":null,"abstract":"The main result of this paper is that when $M_0$, $M_1$ are two simply connected spin manifolds of the same dimension $d \\geq 5$ which both admit a metric of positive scalar curvature, the spaces $\\mathcal{R}^+(M_0)$ and $\\mathcal{R}^+(M_1)$ of such metrics are homotopy equivalent. This supersedes a previous result of Chernysh and Walsh which gives the same conclusion when $M_0$ and $M_1$ are also spin cobordant. \nWe also prove an analogous result for simply connected manifolds which do not admit a spin structure; we need to assume that $d \\neq 8$ in that case.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JEMS/1333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

Abstract

The main result of this paper is that when $M_0$, $M_1$ are two simply connected spin manifolds of the same dimension $d \geq 5$ which both admit a metric of positive scalar curvature, the spaces $\mathcal{R}^+(M_0)$ and $\mathcal{R}^+(M_1)$ of such metrics are homotopy equivalent. This supersedes a previous result of Chernysh and Walsh which gives the same conclusion when $M_0$ and $M_1$ are also spin cobordant. We also prove an analogous result for simply connected manifolds which do not admit a spin structure; we need to assume that $d \neq 8$ in that case.
正标量曲率度量空间的同伦类型
本文的主要结果是,当$M_0$, $M_1$是两个同维的单连通自旋流形$d \geq 5$且都有一个正标量曲率的度规时,这些度规的空间$\mathcal{R}^+(M_0)$和$\mathcal{R}^+(M_1)$是同伦等价的。这取代了Chernysh和Walsh先前的结果,该结果在$M_0$和$M_1$也是自旋共旋时给出了相同的结论。我们还证明了不允许自旋结构的单连通流形的一个类似结果;在这种情况下,我们需要假设$d \neq 8$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信