Single-ended fault location for transmission lines using traveling wave and multilayer perceptron network

M. N. Hashim, M. K. Osman, M. N. Ibrahim, A. F. Abidin, Mat Nizam Mahmud
{"title":"Single-ended fault location for transmission lines using traveling wave and multilayer perceptron network","authors":"M. N. Hashim, M. K. Osman, M. N. Ibrahim, A. F. Abidin, Mat Nizam Mahmud","doi":"10.1109/ICCSCE.2016.7893632","DOIUrl":null,"url":null,"abstract":"Transmission lines are subjected to many kind of fault. Therefore fault location scheme is needed to determine the exact location of fault. This paper proposed a method for estimating transmission line fault location system using traveling wave method and artificial neural network (ANN). The method starts by decomposing the current signal from the faulted phase using DWT technique. Then, time fault measurement is extracted from the decomposed signal. Finally, a type of ANN called multilayer perceptron network (MLP) is used to locate the fault location. The proposed method is benchmark against the existing method and evaluated by using 5 measurement indexes; Coefficient of Determination (R2) as well as four error measures-Percentage Prediction Error (PPE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The results shows that integration of traveling wave and ANN absolutely could improve the performance especially for fault occurs in short distance.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"10 1","pages":"522-527"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Transmission lines are subjected to many kind of fault. Therefore fault location scheme is needed to determine the exact location of fault. This paper proposed a method for estimating transmission line fault location system using traveling wave method and artificial neural network (ANN). The method starts by decomposing the current signal from the faulted phase using DWT technique. Then, time fault measurement is extracted from the decomposed signal. Finally, a type of ANN called multilayer perceptron network (MLP) is used to locate the fault location. The proposed method is benchmark against the existing method and evaluated by using 5 measurement indexes; Coefficient of Determination (R2) as well as four error measures-Percentage Prediction Error (PPE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The results shows that integration of traveling wave and ANN absolutely could improve the performance especially for fault occurs in short distance.
基于行波和多层感知器网络的输电线路单端故障定位
输电线路容易发生各种各样的故障。因此,需要故障定位方案来确定故障的准确位置。提出了一种基于行波法和人工神经网络的输电线路故障定位系统估计方法。该方法首先利用小波变换技术对故障相位的电流信号进行分解。然后,从分解后的信号中提取时间故障测量值。最后,使用一种称为多层感知器网络(MLP)的人工神经网络进行故障定位。以现有方法为基准,采用5个度量指标对方法进行评价;决定系数(R2)以及四种误差测量-百分比预测误差(PPE),均方误差(MSE),均方根误差(RMSE)和平均绝对百分比误差(MAPE)。结果表明,行波与人工神经网络的结合绝对可以提高系统的性能,特别是对于发生在短距离内的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信