{"title":"Adoption Dynamics and Societal Impact of AI Systems in Complex Networks","authors":"Pedro M. Fernandes, F. C. Santos, Manuel Lopes","doi":"10.1145/3375627.3375847","DOIUrl":null,"url":null,"abstract":"We propose a game-theoretical model to simulate the dynamics of AI adoption in adaptive networks. This formalism allows us to understand the impact of the adoption of AI systems for society as a whole, addressing some of the concerns on the need for regulation. Using this model we study the adoption of AI systems, the distribution of the different types of AI (from selfish to utilitarian), the appearance of clusters of specific AI types, and the impact on the fitness of each individual. We suggest that the entangled evolution of individual strategy and network structure constitutes a key mechanism for the sustainability of utilitarian and human-conscious AI. Differently, in the absence of rewiring, a minority of the population can easily foster the adoption of selfish AI and gains a benefit at the expense of the remaining majority.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a game-theoretical model to simulate the dynamics of AI adoption in adaptive networks. This formalism allows us to understand the impact of the adoption of AI systems for society as a whole, addressing some of the concerns on the need for regulation. Using this model we study the adoption of AI systems, the distribution of the different types of AI (from selfish to utilitarian), the appearance of clusters of specific AI types, and the impact on the fitness of each individual. We suggest that the entangled evolution of individual strategy and network structure constitutes a key mechanism for the sustainability of utilitarian and human-conscious AI. Differently, in the absence of rewiring, a minority of the population can easily foster the adoption of selfish AI and gains a benefit at the expense of the remaining majority.