Song Wang, S. Chandrasekharan, K. Gomez, K. Sithamparanathan, A. Al-Hourani, M. R. Asghar, G. Russello, Paul Zanna
{"title":"SECOD: SDN sEcure control and data plane algorithm for detecting and defending against DoS attacks","authors":"Song Wang, S. Chandrasekharan, K. Gomez, K. Sithamparanathan, A. Al-Hourani, M. R. Asghar, G. Russello, Paul Zanna","doi":"10.1109/NOMS.2018.8406196","DOIUrl":null,"url":null,"abstract":"Although the popularity of Software-Defined Networking (SDN) is increasing, it is also vulnerable to security attacks such as Denial of Service (DoS) attacks. Since in SDN, the control plane is isolated from the data plane, DoS attackers can easily target the control plane to impair the network infrastructure in addition to the data plane to degrade the user's Quality of Service (QoS). In our previous work, we introduced SECO, an SDN Secure Controller algorithm to detect and defend SDN against DoS attacks. Simulation results showed that SECO successfully defends SDN networks from DoS attacks. In this paper, we present SDN sEcure COntrol and Data Plane (SECOD), which is an improved version of SECO. Basically, SECOD introduces new triggers to detect and prevent DoS attacks in both control and data planes. Moreover, SECOD is implemented and tested using SDN-based hardware testbed, OpenFlow-based switch, and RYU controller to capture the dynamics of realistic hardware and software. The results show that SECOD successfully detects and effectively mitigates DoS attacks on SDN networks keeping data plane performance at 99.72% compared to a network not under attack.","PeriodicalId":19331,"journal":{"name":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","volume":"23 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2018.8406196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Although the popularity of Software-Defined Networking (SDN) is increasing, it is also vulnerable to security attacks such as Denial of Service (DoS) attacks. Since in SDN, the control plane is isolated from the data plane, DoS attackers can easily target the control plane to impair the network infrastructure in addition to the data plane to degrade the user's Quality of Service (QoS). In our previous work, we introduced SECO, an SDN Secure Controller algorithm to detect and defend SDN against DoS attacks. Simulation results showed that SECO successfully defends SDN networks from DoS attacks. In this paper, we present SDN sEcure COntrol and Data Plane (SECOD), which is an improved version of SECO. Basically, SECOD introduces new triggers to detect and prevent DoS attacks in both control and data planes. Moreover, SECOD is implemented and tested using SDN-based hardware testbed, OpenFlow-based switch, and RYU controller to capture the dynamics of realistic hardware and software. The results show that SECOD successfully detects and effectively mitigates DoS attacks on SDN networks keeping data plane performance at 99.72% compared to a network not under attack.