Non-uniform Sampling Strategies for NeRF on 360{\textdegree} images

Takashi Otonari, Satoshi Ikehata, K. Aizawa
{"title":"Non-uniform Sampling Strategies for NeRF on 360{\\textdegree} images","authors":"Takashi Otonari, Satoshi Ikehata, K. Aizawa","doi":"10.48550/arXiv.2212.03635","DOIUrl":null,"url":null,"abstract":"In recent years, the performance of novel view synthesis using perspective images has dramatically improved with the advent of neural radiance fields (NeRF). This study proposes two novel techniques that effectively build NeRF for 360{\\textdegree} omnidirectional images. Due to the characteristics of a 360{\\textdegree} image of ERP format that has spatial distortion in their high latitude regions and a 360{\\textdegree} wide viewing angle, NeRF's general ray sampling strategy is ineffective. Hence, the view synthesis accuracy of NeRF is limited and learning is not efficient. We propose two non-uniform ray sampling schemes for NeRF to suit 360{\\textdegree} images - distortion-aware ray sampling and content-aware ray sampling. We created an evaluation dataset Synth360 using Replica and SceneCity models of indoor and outdoor scenes, respectively. In experiments, we show that our proposal successfully builds 360{\\textdegree} image NeRF in terms of both accuracy and efficiency. The proposal is widely applicable to advanced variants of NeRF. DietNeRF, AugNeRF, and NeRF++ combined with the proposed techniques further improve the performance. Moreover, we show that our proposed method enhances the quality of real-world scenes in 360{\\textdegree} images. Synth360: https://drive.google.com/drive/folders/1suL9B7DO2no21ggiIHkH3JF3OecasQLb.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"101 1","pages":"344"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.03635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the performance of novel view synthesis using perspective images has dramatically improved with the advent of neural radiance fields (NeRF). This study proposes two novel techniques that effectively build NeRF for 360{\textdegree} omnidirectional images. Due to the characteristics of a 360{\textdegree} image of ERP format that has spatial distortion in their high latitude regions and a 360{\textdegree} wide viewing angle, NeRF's general ray sampling strategy is ineffective. Hence, the view synthesis accuracy of NeRF is limited and learning is not efficient. We propose two non-uniform ray sampling schemes for NeRF to suit 360{\textdegree} images - distortion-aware ray sampling and content-aware ray sampling. We created an evaluation dataset Synth360 using Replica and SceneCity models of indoor and outdoor scenes, respectively. In experiments, we show that our proposal successfully builds 360{\textdegree} image NeRF in terms of both accuracy and efficiency. The proposal is widely applicable to advanced variants of NeRF. DietNeRF, AugNeRF, and NeRF++ combined with the proposed techniques further improve the performance. Moreover, we show that our proposed method enhances the quality of real-world scenes in 360{\textdegree} images. Synth360: https://drive.google.com/drive/folders/1suL9B7DO2no21ggiIHkH3JF3OecasQLb.
360{\textdegree}图像上NeRF的非均匀采样策略
近年来,随着神经辐射场(neural radiance fields, NeRF)的出现,利用透视图像进行新型视图合成的性能得到了显著提高。本研究提出了两种新技术,可以有效地为360度全向图像构建NeRF。由于ERP格式的360{\textdegree}图像在高纬度区域具有空间畸变和360{\textdegree}宽视角的特点,NeRF的一般射线采样策略是无效的。因此,NeRF的视图合成精度有限,学习效率不高。我们提出了两种适用于360度图像的NeRF非均匀射线采样方案——畸变感知射线采样和内容感知射线采样。我们分别使用室内和室外场景的Replica和SceneCity模型创建了一个评估数据集Synth360。在实验中,我们证明了我们的建议在精度和效率方面成功地构建了360{\textdegree}图像NeRF。该建议广泛适用于NeRF的高级变体。DietNeRF、AugNeRF和nerf++结合所提出的技术进一步提高了性能。此外,我们表明,我们提出的方法提高了360{\textdegree}图像的真实场景质量。Synth360: https://drive.google.com/drive/folders/1suL9B7DO2no21ggiIHkH3JF3OecasQLb。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信