{"title":"Estimating the Number of Zeros of Abelian Integrals for the Perturbed Cubic Z4-Equivariant Planar Hamiltonian System","authors":"Aiyong Chen, Wentao Huang, Yonghui Xia, Huiyang Zhang","doi":"10.1142/S0218127423500852","DOIUrl":null,"url":null,"abstract":"We analyze the dynamics of a class of [Formula: see text]-equivariant Hamiltonian systems of the form [Formula: see text], where [Formula: see text] is complex, the time [Formula: see text] is real, while [Formula: see text] and [Formula: see text] are real parameters. The topological phase portraits with at least one center are given. The finite generators of Abelian integral [Formula: see text] are obtained, where [Formula: see text] is a family of closed ovals defined by [Formula: see text] [Formula: see text], [Formula: see text] is the open interval on which [Formula: see text] is defined, [Formula: see text], [Formula: see text] are real polynomials in [Formula: see text] and [Formula: see text] with degree [Formula: see text]. We give an estimation of the number of isolated zeros of the corresponding Abelian integral by using its algebraic structure. We show that for the given polynomials [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] with degree [Formula: see text], the number of the limit cycles of the perturbed [Formula: see text]-equivariant Hamiltonian system does not exceed [Formula: see text] (taking into account the multiplicity).","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218127423500852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze the dynamics of a class of [Formula: see text]-equivariant Hamiltonian systems of the form [Formula: see text], where [Formula: see text] is complex, the time [Formula: see text] is real, while [Formula: see text] and [Formula: see text] are real parameters. The topological phase portraits with at least one center are given. The finite generators of Abelian integral [Formula: see text] are obtained, where [Formula: see text] is a family of closed ovals defined by [Formula: see text] [Formula: see text], [Formula: see text] is the open interval on which [Formula: see text] is defined, [Formula: see text], [Formula: see text] are real polynomials in [Formula: see text] and [Formula: see text] with degree [Formula: see text]. We give an estimation of the number of isolated zeros of the corresponding Abelian integral by using its algebraic structure. We show that for the given polynomials [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] with degree [Formula: see text], the number of the limit cycles of the perturbed [Formula: see text]-equivariant Hamiltonian system does not exceed [Formula: see text] (taking into account the multiplicity).