Estimating the Number of Zeros of Abelian Integrals for the Perturbed Cubic Z4-Equivariant Planar Hamiltonian System

Aiyong Chen, Wentao Huang, Yonghui Xia, Huiyang Zhang
{"title":"Estimating the Number of Zeros of Abelian Integrals for the Perturbed Cubic Z4-Equivariant Planar Hamiltonian System","authors":"Aiyong Chen, Wentao Huang, Yonghui Xia, Huiyang Zhang","doi":"10.1142/S0218127423500852","DOIUrl":null,"url":null,"abstract":"We analyze the dynamics of a class of [Formula: see text]-equivariant Hamiltonian systems of the form [Formula: see text], where [Formula: see text] is complex, the time [Formula: see text] is real, while [Formula: see text] and [Formula: see text] are real parameters. The topological phase portraits with at least one center are given. The finite generators of Abelian integral [Formula: see text] are obtained, where [Formula: see text] is a family of closed ovals defined by [Formula: see text] [Formula: see text], [Formula: see text] is the open interval on which [Formula: see text] is defined, [Formula: see text], [Formula: see text] are real polynomials in [Formula: see text] and [Formula: see text] with degree [Formula: see text]. We give an estimation of the number of isolated zeros of the corresponding Abelian integral by using its algebraic structure. We show that for the given polynomials [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] with degree [Formula: see text], the number of the limit cycles of the perturbed [Formula: see text]-equivariant Hamiltonian system does not exceed [Formula: see text] (taking into account the multiplicity).","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218127423500852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the dynamics of a class of [Formula: see text]-equivariant Hamiltonian systems of the form [Formula: see text], where [Formula: see text] is complex, the time [Formula: see text] is real, while [Formula: see text] and [Formula: see text] are real parameters. The topological phase portraits with at least one center are given. The finite generators of Abelian integral [Formula: see text] are obtained, where [Formula: see text] is a family of closed ovals defined by [Formula: see text] [Formula: see text], [Formula: see text] is the open interval on which [Formula: see text] is defined, [Formula: see text], [Formula: see text] are real polynomials in [Formula: see text] and [Formula: see text] with degree [Formula: see text]. We give an estimation of the number of isolated zeros of the corresponding Abelian integral by using its algebraic structure. We show that for the given polynomials [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] with degree [Formula: see text], the number of the limit cycles of the perturbed [Formula: see text]-equivariant Hamiltonian system does not exceed [Formula: see text] (taking into account the multiplicity).
摄动三次z4等变平面哈密顿系统的阿贝尔积分零点数的估计
我们分析了一类[公式:见文]——形式为[公式:见文]的等变哈密顿系统的动力学,其中[公式:见文]是复数,时间[公式:见文]是实数,[公式:见文]和[公式:见文]是实参数。给出了具有至少一个中心的拓扑相图。得到了阿贝尔积分[公式:见文]的有限生成函数,其中[公式:见文]是由[公式:见文][公式:见文]定义的闭椭圆族,[公式:见文]是定义[公式:见文]的开区间,[公式:见文],[公式:见文]是[公式:见文]和[公式:见文]中带次的实多项式[公式:见文]。利用阿贝尔积分的代数结构,给出了相应阿贝尔积分的孤立零个数的估计。在[公式:见文][公式:见文]和[公式:见文]中的给定多项式[公式:见文]和[公式:见文],摄动[公式:见文]-等变哈密顿系统的极限环数不超过[公式:见文](考虑多重性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信