Nematode Identification using Artificial Neural Networks

Jason Uhlemann, Oisín Cawley, T. Kakouli-Duarte
{"title":"Nematode Identification using Artificial Neural Networks","authors":"Jason Uhlemann, Oisín Cawley, T. Kakouli-Duarte","doi":"10.5220/0009776600130022","DOIUrl":null,"url":null,"abstract":": Nematodes are microscopic, worm-like organisms with applications in monitoring the environment for potential ecosystem damage or recovery. Nematodes are an extremely abundant and diverse organism, with millions of different species estimated to exist. This trait leads to the task of identifying nematodes, at a species level, being complicated and time-consuming. Their morphological identification process is fundamentally one of pattern matching, using sketches in a standard taxonomic key as a comparison to the nematode image under a microscope. As Deep Learning has shown vast improvements, in particular, for image classification, we explore the effectiveness of Nematode Identification using Convolutional Neural Networks. We also seek to discover the optimal training process and hyper-parameters for our specific context.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"22 1","pages":"13-22"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0009776600130022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

: Nematodes are microscopic, worm-like organisms with applications in monitoring the environment for potential ecosystem damage or recovery. Nematodes are an extremely abundant and diverse organism, with millions of different species estimated to exist. This trait leads to the task of identifying nematodes, at a species level, being complicated and time-consuming. Their morphological identification process is fundamentally one of pattern matching, using sketches in a standard taxonomic key as a comparison to the nematode image under a microscope. As Deep Learning has shown vast improvements, in particular, for image classification, we explore the effectiveness of Nematode Identification using Convolutional Neural Networks. We also seek to discover the optimal training process and hyper-parameters for our specific context.
利用人工神经网络识别线虫
线虫是一种微小的蠕虫状生物,用于监测环境,以发现潜在的生态系统破坏或恢复。线虫是一种极其丰富多样的生物,估计存在数百万种不同的物种。这一特性导致在物种水平上识别线虫的任务既复杂又耗时。它们的形态识别过程基本上是一种模式匹配,使用标准分类密钥中的草图与显微镜下的线虫图像进行比较。由于深度学习已经显示出巨大的进步,特别是在图像分类方面,我们探索了使用卷积神经网络识别线虫的有效性。我们还寻求发现适合我们特定环境的最佳训练过程和超参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信