A note on the ternary purely exponential diophantine equation Ax + By = Cz with A + B = C2

IF 0.4 4区 数学 Q4 MATHEMATICS
Elif Kizildere, M. Le, G. Soydan
{"title":"A note on the ternary purely exponential diophantine equation Ax + By = Cz with A + B = C2","authors":"Elif Kizildere, M. Le, G. Soydan","doi":"10.1556/012.2020.57.2.1457","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:italic>l,m,r</jats:italic> be fixed positive integers such that 2<jats:inline-formula />| <jats:italic>l</jats:italic>, 3<jats:inline-formula /><jats:italic>lm</jats:italic>, <jats:italic>l > r</jats:italic> and 3 | <jats:italic>r</jats:italic>. In this paper, using the BHV theorem on the existence of primitive divisors of Lehmer numbers, we prove that if min{<jats:italic>rlm</jats:italic><jats:sup>2</jats:sup> − 1<jats:italic>,</jats:italic>(<jats:italic>l</jats:italic> − <jats:italic>r</jats:italic>)<jats:italic>lm</jats:italic><jats:sup>2</jats:sup> + 1} <jats:italic>></jats:italic> 30, then the equation (<jats:italic>rlm</jats:italic><jats:sup>2</jats:sup> − 1)<jats:sup><jats:italic>x</jats:italic></jats:sup> + ((<jats:italic>l</jats:italic> − <jats:italic>r</jats:italic>)<jats:italic>lm</jats:italic><jats:sup>2</jats:sup> + 1)<jats:sup><jats:italic>y</jats:italic></jats:sup> = (<jats:italic>lm</jats:italic>)<jats:sup><jats:italic>z</jats:italic></jats:sup> has only the positive integer solution (<jats:italic>x,y,z</jats:italic>) = (1<jats:italic>,</jats:italic>1<jats:italic>,</jats:italic>2).</jats:p>","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"20 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2020.57.2.1457","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Let l,m,r be fixed positive integers such that 2| l, 3lm, l > r and 3 | r. In this paper, using the BHV theorem on the existence of primitive divisors of Lehmer numbers, we prove that if min{rlm2 − 1,(lr)lm2 + 1} > 30, then the equation (rlm2 − 1)x + ((lr)lm2 + 1)y = (lm)z has only the positive integer solution (x,y,z) = (1,1,2).
关于三元纯指数丢番图方程Ax + By = Cz与A + B = C2的注释
设l,m,r为固定正整数,使得2| l, 3lm, 1 > r和3 | r。本文利用Lehmer数原初因子存在性的BHV定理,证明了如果min{rlm2−1,(l−r)lm2 + 1} > 30,则方程(rlm2−1)x + ((l−r)lm2 + 1)y = (lm)z只有正整数解(x,y,z) =(1,1,2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信