{"title":"bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R","authors":"Jouni Helske, M. Vihola","doi":"10.32614/RJ-2021-103","DOIUrl":null,"url":null,"abstract":"We present an R package bssm for Bayesian non-linear/non-Gaussian state space modelling. Unlike the existing packages, bssm allows for easy-to-use approximate inference based on Gaussian approximations such as the Laplace approximation and the extended Kalman filter. The package accommodates also discretely observed latent diffusion processes. The inference is based on fully automatic, adaptive Markov chain Monte Carlo (MCMC) on the hyperparameters, with optional importance sampling post-correction to eliminate any approximation bias. The package implements also a direct pseudo-marginal MCMC and a delayed acceptance pseudo-marginal MCMC using intermediate approximations. The package offers an easy-to-use interface to define models with linear-Gaussian state dynamics with non-Gaussian observation models, and has an Rcpp interface for specifying custom non-linear and diffusion models. models are a flexible tool for analysing a variety of time series data. Here we introduced the R package bssm for fully Bayesian state space modelling for a large class of models with several alternative MCMC sampling strategies. All computationally intensive parts of the package are","PeriodicalId":20974,"journal":{"name":"R J.","volume":"55 1","pages":"471"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/RJ-2021-103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We present an R package bssm for Bayesian non-linear/non-Gaussian state space modelling. Unlike the existing packages, bssm allows for easy-to-use approximate inference based on Gaussian approximations such as the Laplace approximation and the extended Kalman filter. The package accommodates also discretely observed latent diffusion processes. The inference is based on fully automatic, adaptive Markov chain Monte Carlo (MCMC) on the hyperparameters, with optional importance sampling post-correction to eliminate any approximation bias. The package implements also a direct pseudo-marginal MCMC and a delayed acceptance pseudo-marginal MCMC using intermediate approximations. The package offers an easy-to-use interface to define models with linear-Gaussian state dynamics with non-Gaussian observation models, and has an Rcpp interface for specifying custom non-linear and diffusion models. models are a flexible tool for analysing a variety of time series data. Here we introduced the R package bssm for fully Bayesian state space modelling for a large class of models with several alternative MCMC sampling strategies. All computationally intensive parts of the package are