Liquidity Guided Machine Learning: The Case of the Volatility Risk Premium

Eric Ghysels, Ruslan Goyenko, Chengyu Zhang
{"title":"Liquidity Guided Machine Learning: The Case of the Volatility Risk Premium","authors":"Eric Ghysels, Ruslan Goyenko, Chengyu Zhang","doi":"10.2139/ssrn.3726743","DOIUrl":null,"url":null,"abstract":"The financial industry has eagerly adopted machine learning algorithms to improve on traditional predictive models. In this paper we caution against blindly applying such techniques. We compare forecasting ability of machine learning methods in evaluating future payoffs on synthetic variance swaps. Standard machine learning methods tend to identify contracts which are illiquid, and hard to trade. The most successful strategies turn out to be those where we pair machine learning with institutional and market/traders inputs and insights. We show that liquidity guided pre-selection of inputs to machine learning results in trading strategies with improved pay-offs to the writers of variance swap contract replicating portfolio.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3726743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The financial industry has eagerly adopted machine learning algorithms to improve on traditional predictive models. In this paper we caution against blindly applying such techniques. We compare forecasting ability of machine learning methods in evaluating future payoffs on synthetic variance swaps. Standard machine learning methods tend to identify contracts which are illiquid, and hard to trade. The most successful strategies turn out to be those where we pair machine learning with institutional and market/traders inputs and insights. We show that liquidity guided pre-selection of inputs to machine learning results in trading strategies with improved pay-offs to the writers of variance swap contract replicating portfolio.
流动性引导的机器学习:波动性风险溢价的案例
金融行业急切地采用机器学习算法来改进传统的预测模型。在本文中,我们告诫不要盲目地应用这些技术。我们比较了机器学习方法在评估综合方差互换的未来收益方面的预测能力。标准的机器学习方法倾向于识别那些流动性差、难以交易的合约。事实证明,最成功的策略是将机器学习与机构和市场/交易者的输入和见解结合起来。我们表明,流动性引导机器学习输入的预先选择导致交易策略的结果,并改善了方差掉期合约复制投资组合的作者的回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信