Algoritmo para el análisis temático de documentos digitales

IF 0.2 4区 管理学 Q4 INFORMATION SCIENCE & LIBRARY SCIENCE
L. Bautista, Karen Vanessa Martínez Acevedo
{"title":"Algoritmo para el análisis temático de documentos digitales","authors":"L. Bautista, Karen Vanessa Martínez Acevedo","doi":"10.22201/IIBI.24488321XE.2021.89.58419","DOIUrl":null,"url":null,"abstract":"The objective of the article is to present an algorithm for assigning subject areas to digital documents which serve as a support tool for thematic analysis within the organization of information, in order to be implemented in development of controlled vocabularies. The methodology used consisted in applying Optical Character Recognition (OCR) and Latent Dirichlet Allocation (LDA) as main tools for developing an algorithm based on Python programming language,which allows reading of files with a PDF extension in order to obtain the main themes of textual corpus. Results of the algorithm’s application demonstrate its usefulness in the area of indexing as a system for identifying and extracting relevant topics from a specific document in electronic format, and allow automation of processes by the information professional. This way, its use as a development of alternative points of access based on the content of texts is concluded.","PeriodicalId":44196,"journal":{"name":"Investigacion Bibliotecologica","volume":"49 1","pages":"13-31"},"PeriodicalIF":0.2000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigacion Bibliotecologica","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.22201/IIBI.24488321XE.2021.89.58419","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of the article is to present an algorithm for assigning subject areas to digital documents which serve as a support tool for thematic analysis within the organization of information, in order to be implemented in development of controlled vocabularies. The methodology used consisted in applying Optical Character Recognition (OCR) and Latent Dirichlet Allocation (LDA) as main tools for developing an algorithm based on Python programming language,which allows reading of files with a PDF extension in order to obtain the main themes of textual corpus. Results of the algorithm’s application demonstrate its usefulness in the area of indexing as a system for identifying and extracting relevant topics from a specific document in electronic format, and allow automation of processes by the information professional. This way, its use as a development of alternative points of access based on the content of texts is concluded.
数字文档专题分析算法
本文的目的是提出一种将主题领域分配给数字文档的算法,作为信息组织内主题分析的支持工具,以便在受控词汇表的开发中实现。使用的方法是将光学字符识别(OCR)和潜在狄利克雷分配(LDA)作为主要工具,开发基于Python编程语言的算法,该算法允许读取具有PDF扩展名的文件,以获得文本语料库的主题。该算法的应用结果证明了它在索引领域的有效性,作为一种系统,用于识别和提取电子格式的特定文档的相关主题,并允许信息专业人员自动化处理。这样,就总结了它作为基于文本内容的替代访问点的发展的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Investigacion Bibliotecologica
Investigacion Bibliotecologica INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
1.20
自引率
0.00%
发文量
38
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信