Analysis of contention tree algorithms

A. Janssen, M.L.M. Jong
{"title":"Analysis of contention tree algorithms","authors":"A. Janssen, M.L.M. Jong","doi":"10.1109/18.868486","DOIUrl":null,"url":null,"abstract":"The Capetanakis-Tsybakov-Mikhailov (1978, 1979) contention tree algorithm provides an efficient scheme for multiaccessing a broadcast-communication channel. This paper studies the statistical properties of multiple-access contention tree algorithms with ternary feedback for an arbitrary degree of node. The particular quantities under investigation are the number of levels required for a random contender to have successful access, as well as the number of levels and the number of contention frames required to provide access for all contenders. Through classical Fourier analysis approximations to both the average and the variance are calculated as a function of the number of contenders n. It is demonstrated that in the limit of large n these quantities do not converge to a fixed mode, but contain an oscillating term as well.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"22 1","pages":"2163-2172"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.868486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

The Capetanakis-Tsybakov-Mikhailov (1978, 1979) contention tree algorithm provides an efficient scheme for multiaccessing a broadcast-communication channel. This paper studies the statistical properties of multiple-access contention tree algorithms with ternary feedback for an arbitrary degree of node. The particular quantities under investigation are the number of levels required for a random contender to have successful access, as well as the number of levels and the number of contention frames required to provide access for all contenders. Through classical Fourier analysis approximations to both the average and the variance are calculated as a function of the number of contenders n. It is demonstrated that in the limit of large n these quantities do not converge to a fixed mode, but contain an oscillating term as well.
争用树算法分析
Capetanakis-Tsybakov-Mikhailov(1978, 1979)争用树算法为广播通信信道的多址访问提供了一种有效的方案。研究了任意节点度下具有三元反馈的多址竞争树算法的统计性质。所研究的特定数量是随机竞争者获得成功访问所需的级别数,以及为所有竞争者提供访问所需的级别数和争用帧数。通过经典的傅立叶分析,计算了平均值和方差的近似作为竞争者数量n的函数。证明了在大n的极限下,这些量不收敛于固定模式,但也包含振荡项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信