Some stability results on non-linear singular differential systems with random impulsive moments

IF 2.2 Q1 MATHEMATICS, APPLIED
Arumugam Vinodkumar, Sivakumar Harinie, Michal Feckan, J. Alzabut
{"title":"Some stability results on non-linear singular differential systems with random impulsive moments","authors":"Arumugam Vinodkumar, Sivakumar Harinie, Michal Feckan, J. Alzabut","doi":"10.11121/ijocta.2023.1327","DOIUrl":null,"url":null,"abstract":"This paper studies the exponential stability for random impulsive non-linear singular differential systems. We established some new sufficient conditions for the proposed singular differential system by using the Lyapunov function method with random impulsive time points. Further, to validate the theoretical results' effectiveness, we finally gave two numerical examples that study with graphical illustration and an additional example involving matrices with complex entries, proving the results to be true in that case as well.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"23 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2023.1327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the exponential stability for random impulsive non-linear singular differential systems. We established some new sufficient conditions for the proposed singular differential system by using the Lyapunov function method with random impulsive time points. Further, to validate the theoretical results' effectiveness, we finally gave two numerical examples that study with graphical illustration and an additional example involving matrices with complex entries, proving the results to be true in that case as well.
具有随机脉冲矩的非线性奇异微分系统的一些稳定性结果
研究了随机脉冲非线性奇异微分系统的指数稳定性。利用随机脉冲时间点的李雅普诺夫函数方法,建立了奇异微分系统的一些新的充分条件。此外,为了验证理论结果的有效性,我们最后给出了两个用图形说明研究的数值例子和一个涉及复条目矩阵的额外例子,证明了在这种情况下结果也是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信