S. Alaei, Ravi Kumar, Azarakhsh Malekian, Erik Vee
{"title":"Balanced allocation with succinct representation","authors":"S. Alaei, Ravi Kumar, Azarakhsh Malekian, Erik Vee","doi":"10.1145/1835804.1835872","DOIUrl":null,"url":null,"abstract":"Motivated by applications in guaranteed delivery in computational advertising, we consider the general problem of balanced allocation in a bipartite supply-demand setting. Our formulation captures the notion of deviation from being balanced by a convex penalty function. While this formulation admits a convex programming solution, we strive for more robust and scalable algorithms. For the case of L1 penalty functions we obtain a simple combinatorial algorithm based on min-cost flow in graphs and show how to precompute a linear amount of information such that the allocation along any edge can be approximated in constant time. We then extend our combinatorial solution to any convex function by solving a convex cost flow. These scalable methods may have applications in other contexts stipulating balanced allocation. We study the performance of our algorithms on large real-world graphs and show that they are efficient, scalable, and robust in practice.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835804.1835872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Motivated by applications in guaranteed delivery in computational advertising, we consider the general problem of balanced allocation in a bipartite supply-demand setting. Our formulation captures the notion of deviation from being balanced by a convex penalty function. While this formulation admits a convex programming solution, we strive for more robust and scalable algorithms. For the case of L1 penalty functions we obtain a simple combinatorial algorithm based on min-cost flow in graphs and show how to precompute a linear amount of information such that the allocation along any edge can be approximated in constant time. We then extend our combinatorial solution to any convex function by solving a convex cost flow. These scalable methods may have applications in other contexts stipulating balanced allocation. We study the performance of our algorithms on large real-world graphs and show that they are efficient, scalable, and robust in practice.