{"title":"Effective measures for inter-document similarity","authors":"John S. Whissell, C. Clarke","doi":"10.1145/2505515.2505526","DOIUrl":null,"url":null,"abstract":"While supervised learning-to-rank algorithms have largely supplanted unsupervised query-document similarity measures for search, the exploration of query-document measures by many researchers over many years produced insights that might be exploited in other domains. For example, the BM25 measure substantially and consistently outperforms cosine across many tested environments, and potentially provides retrieval effectiveness approaching that of the best learning-to-rank methods over equivalent features sets. Other measures based on language modeling and divergence from randomness can outperform BM25 in some circumstances. Despite this evidence, cosine remains the prevalent method for determining inter-document similarity for clustering and other applications. However, recent research demonstrates that BM25 terms weights can significantly improve clustering. In this work, we extend that result, presenting and evaluating novel inter-document similarity measures based on BM25, language modeling, and divergence from randomness. In our first experiment we analyze the accuracy of nearest neighborhoods when using our measures. In our second experiment, we analyze using clustering algorithms in conjunction with our measures. Our novel symmetric BM25 and language modeling similarity measures outperform alternative measures in both experiments. This outcome strongly recommends the adoption of these measures, replacing cosine similarity in future work.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
While supervised learning-to-rank algorithms have largely supplanted unsupervised query-document similarity measures for search, the exploration of query-document measures by many researchers over many years produced insights that might be exploited in other domains. For example, the BM25 measure substantially and consistently outperforms cosine across many tested environments, and potentially provides retrieval effectiveness approaching that of the best learning-to-rank methods over equivalent features sets. Other measures based on language modeling and divergence from randomness can outperform BM25 in some circumstances. Despite this evidence, cosine remains the prevalent method for determining inter-document similarity for clustering and other applications. However, recent research demonstrates that BM25 terms weights can significantly improve clustering. In this work, we extend that result, presenting and evaluating novel inter-document similarity measures based on BM25, language modeling, and divergence from randomness. In our first experiment we analyze the accuracy of nearest neighborhoods when using our measures. In our second experiment, we analyze using clustering algorithms in conjunction with our measures. Our novel symmetric BM25 and language modeling similarity measures outperform alternative measures in both experiments. This outcome strongly recommends the adoption of these measures, replacing cosine similarity in future work.