The granite-related, high-tonnage Sn-Li deposit of Argemela, central Portugal

Q4 Earth and Planetary Sciences
C. Inverno, Paulo J. V. Ferraz, M. Moreira, Fernanda Guimar˜aes, A. Filipe
{"title":"The granite-related, high-tonnage Sn-Li deposit of Argemela, central Portugal","authors":"C. Inverno, Paulo J. V. Ferraz, M. Moreira, Fernanda Guimar˜aes, A. Filipe","doi":"10.17979/CADLAXE.2019.41.0.5823","DOIUrl":null,"url":null,"abstract":"The Argemela Sn-Li quartz vein stockwork, east of the Panasqueira tungsten mine, is hosted in Cambrian slates and greywacke. An underlying Variscan granitic cupola is inferred from spotted slates and albitic microgranite dykes, the last including a thick modified albitic microgranite, enriched in F and Li, exposed some 500 m away, on the hill top. Inferred resources for shallowest deposit portion are 20.1 million tonnes (Mt) at 0.1-0.2% Sn, 0.2% Li and 0.1% (estimate) Rb, but the 650-m vertical-extent of the deposit suggests a resource of >200 Mt (with identical grades). The hydrothermal paragenetic sequence is amblygonite-montebrasite (mostly montebrasite) (Stage I)–quartz I-II–cassiterite (with columbite-tantalite inclusions)─arsenopyrite I─carbonate I-white mica I ─chlorite I–fluorite–apatite–rutile (Stage II)– white mica II–molybdenite– tourmaline– carbonate II-quartz III–arsenopyrite II–sphalerite–stannite–chalcopyrite–pyrite– pyrrhotite-chlorite II (Stage III)–covellite– vivianite–goethite/lepidocrocite (Stage IV). Amblygonite-montebrasite is the main Li carrier; Sn is evenly distributed between cassiterite and stannite; Rb is mostly in white mica (with 0.25-1.23 wt % Rb2O in the hill-top albitic microgranite). Primary aqueous, 1-3 um-wide fluid inclusions in the deposit in quartz I, carbonate I, apatite and cassiterite growth zones yield overall salinities and homogenisation temperatures of 7.2-19.1 wt % NaCl equiv. and 290-360ºC, respectively. The trace concentrations (electronic microprobe analysis) in quartz vein cassiterite reach 1.95 wt % Nb, 0.39 wt % Fe, 0.13 wt % Ti, and low/negligible values of Sb, Zn, As, Ag and Bi showing its granite-hydrothermal affiliation. Fe-poor and Fe-rich sphalerite (lower-intermediate and upper deposit parts) contain 1.0-1.6 and 7.9-9.4 wt % Fe, 64.3-66.0 and 55.9-57.2 wt % Zn, 0.4-0.5 and 0.9-1.1 wt % Cd, respectively. The sphalerite-stannite geothermometer yields temperatures of 245-297ºC. Following higher temperature amblygonite-montebrasite deposition (Stage I), hydrothermal fluids (aCl-=0.25 m), related to the hidden granitic cupola, at a mean pressure-corrected (50 MPa) temperature of 350ºC, were responsible for Stage II minerals deposition. Calculated cassiterite deposition from Sn chloride complexes occurred likewise, from probable magmatic-hydrothermal fluids, at fO2 = 10-34 -10-32 atm and pH=3.5-4. Cassiterite deposition mechanisms were oxidation, mixing, neutralisation, possible aCl- increase, and cooling. Later Fe-poor sphalerite (+kesterite/ferrokesterite) and Fe-rich sphalerite (+stannite) deposited at higher and lower fS2, respectively, the latter probably at a higher fO2 (Stage III). The uniqueness of Argemela system with abundant amblygonite-montebrasite in hydrothermal quartz tin veins may be related to an extreme fractionated F-, Li- and P-rich granitic magma. After the emplacement of the granite/albitic microgranite dykes, an emerging pegmatitic fluid was unable, possibly due to insufficient depth, to form pegmatites but only modified the hill-top albitic microgranite. As a consequence, the system, where mixing of high- and low-salinity magmatic fluids probably occurred, remained very enriched in F, Li and P and by the time the hydrothermal stockwork developed amblygonite-montebrasite (Stage I) was the first mineral to deposit abundantly before Stage II minerals deposition in those Argemela Sn-Li quartz veins.","PeriodicalId":35856,"journal":{"name":"Cadernos do Laboratorio Xeoloxico de Laxe","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cadernos do Laboratorio Xeoloxico de Laxe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17979/CADLAXE.2019.41.0.5823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

The Argemela Sn-Li quartz vein stockwork, east of the Panasqueira tungsten mine, is hosted in Cambrian slates and greywacke. An underlying Variscan granitic cupola is inferred from spotted slates and albitic microgranite dykes, the last including a thick modified albitic microgranite, enriched in F and Li, exposed some 500 m away, on the hill top. Inferred resources for shallowest deposit portion are 20.1 million tonnes (Mt) at 0.1-0.2% Sn, 0.2% Li and 0.1% (estimate) Rb, but the 650-m vertical-extent of the deposit suggests a resource of >200 Mt (with identical grades). The hydrothermal paragenetic sequence is amblygonite-montebrasite (mostly montebrasite) (Stage I)–quartz I-II–cassiterite (with columbite-tantalite inclusions)─arsenopyrite I─carbonate I-white mica I ─chlorite I–fluorite–apatite–rutile (Stage II)– white mica II–molybdenite– tourmaline– carbonate II-quartz III–arsenopyrite II–sphalerite–stannite–chalcopyrite–pyrite– pyrrhotite-chlorite II (Stage III)–covellite– vivianite–goethite/lepidocrocite (Stage IV). Amblygonite-montebrasite is the main Li carrier; Sn is evenly distributed between cassiterite and stannite; Rb is mostly in white mica (with 0.25-1.23 wt % Rb2O in the hill-top albitic microgranite). Primary aqueous, 1-3 um-wide fluid inclusions in the deposit in quartz I, carbonate I, apatite and cassiterite growth zones yield overall salinities and homogenisation temperatures of 7.2-19.1 wt % NaCl equiv. and 290-360ºC, respectively. The trace concentrations (electronic microprobe analysis) in quartz vein cassiterite reach 1.95 wt % Nb, 0.39 wt % Fe, 0.13 wt % Ti, and low/negligible values of Sb, Zn, As, Ag and Bi showing its granite-hydrothermal affiliation. Fe-poor and Fe-rich sphalerite (lower-intermediate and upper deposit parts) contain 1.0-1.6 and 7.9-9.4 wt % Fe, 64.3-66.0 and 55.9-57.2 wt % Zn, 0.4-0.5 and 0.9-1.1 wt % Cd, respectively. The sphalerite-stannite geothermometer yields temperatures of 245-297ºC. Following higher temperature amblygonite-montebrasite deposition (Stage I), hydrothermal fluids (aCl-=0.25 m), related to the hidden granitic cupola, at a mean pressure-corrected (50 MPa) temperature of 350ºC, were responsible for Stage II minerals deposition. Calculated cassiterite deposition from Sn chloride complexes occurred likewise, from probable magmatic-hydrothermal fluids, at fO2 = 10-34 -10-32 atm and pH=3.5-4. Cassiterite deposition mechanisms were oxidation, mixing, neutralisation, possible aCl- increase, and cooling. Later Fe-poor sphalerite (+kesterite/ferrokesterite) and Fe-rich sphalerite (+stannite) deposited at higher and lower fS2, respectively, the latter probably at a higher fO2 (Stage III). The uniqueness of Argemela system with abundant amblygonite-montebrasite in hydrothermal quartz tin veins may be related to an extreme fractionated F-, Li- and P-rich granitic magma. After the emplacement of the granite/albitic microgranite dykes, an emerging pegmatitic fluid was unable, possibly due to insufficient depth, to form pegmatites but only modified the hill-top albitic microgranite. As a consequence, the system, where mixing of high- and low-salinity magmatic fluids probably occurred, remained very enriched in F, Li and P and by the time the hydrothermal stockwork developed amblygonite-montebrasite (Stage I) was the first mineral to deposit abundantly before Stage II minerals deposition in those Argemela Sn-Li quartz veins.
葡萄牙中部Argemela与花岗岩有关的高吨位Sn-Li矿床
Panasqueira钨矿以东的Argemela Sn-Li石英脉网赋存于寒武系板岩和灰岩中。从斑板岩和钠长石微花岗岩岩脉推断出下伏的瓦立斯坎花岗质冲天炉,后者包括一个厚的改性钠长石微花岗岩,富含F和Li,暴露在约500米外的山顶。矿床最浅部分的推断资源量为2010万吨(Mt),含0.1-0.2% Sn, 0.2% Li和0.1% Rb(估计),但矿床650米的垂直范围表明资源量>2亿吨(品位相同)。热液共生序列为:辉长石—蒙巴西石(主要为辉长石)(第1阶段)—石英—ⅱ—锡石(含铌—钽矿包裹体)─毒砂矿I─碳酸盐I─白云母I─绿泥石I─萤石磷灰石金红石(第2阶段)─白云母II─辉钼矿—碧玺石—碳酸盐II─石英III─毒砂矿II─闪锌矿—锡黄铜矿—黄铜矿—磁黄铁矿—绿泥石II(第3阶段)─橄榄石—薇薇石—针铁矿/绢云石(第4阶段)载体;锡在锡石和锡石中均匀分布;Rb主要存在于白色云母中(在山顶的钠长质微花岗岩中Rb2O含量为0.25 ~ 1.23 wt %)。石英I、碳酸盐I、磷灰石和锡石生长带中的原生水流体包裹体宽度为1-3 μ m,总体盐度为7.2-19.1 wt % NaCl当量,均一温度为290-360℃。石英脉锡石中微量元素Nb、Fe、Ti含量分别为1.95 wt %、0.39 wt %和0.13 wt %, Sb、Zn、As、Ag和Bi含量低或可忽略,显示出花岗岩-热液的关系。贫铁和富铁闪锌矿(矿床中下部和上部)的铁含量分别为1.0 ~ 1.6和7.9 ~ 9.4 wt %,锌含量分别为64.3 ~ 66.0和55.9 ~ 57.2%,Cd含量分别为0.4 ~ 0.5和0.9 ~ 1.1 wt %。闪锌矿-锡锌矿地温计的温度为245-297℃。第二阶段矿物沉积主要发生在温度较高的辉长石-蒙氏硼石沉积(第一阶段)之后,与隐伏花岗岩冲天炉相关的热液流体(aCl =0.25 m)在350℃的平均压力校正温度(50 MPa)下发生。在fO2 = 10-34 -10-32 atm, pH=3.5-4的条件下,从可能的岩浆-热液流体中计算得到的锡石沉积也发生在氯化锡络合物中。锡石的沉积机制有氧化、混合、中和、可能的aCl增加和冷却。后期贫铁闪锌矿(+kesterite/ferrokesterite)和富铁闪锌矿(+锡闪锌矿)分别沉积于较高和较低的fS2,后者可能沉积于较高的fO2 (III期)。热液石英锡矿脉中存在丰富的闪长辉石-蒙太白石的Argemela体系的独特性可能与富F-、Li-和p的花岗岩浆极端分馏有关。花岗岩/钠长石微花岗岩岩脉侵位后,一种新兴的伟晶岩流体可能由于深度不足而无法形成伟晶岩,而只是对山顶的钠长石微花岗岩进行了修饰。因此,在可能发生高、低矿化度岩浆流体混合作用的体系中,F、Li和P的富集程度仍然很高,到热液网络发育时,辉长石—孟透辉石(第一期)是在第二期矿物沉积之前首先富集的矿物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cadernos do Laboratorio Xeoloxico de Laxe
Cadernos do Laboratorio Xeoloxico de Laxe Earth and Planetary Sciences-Earth and Planetary Sciences (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信