Heat Diffusion in High-Cp Nb3Sn Composite Superconducting Wires

E. Barzi, F. Berritta, D. Turrioni, A. Zlobin
{"title":"Heat Diffusion in High-Cp Nb3Sn Composite Superconducting Wires","authors":"E. Barzi, F. Berritta, D. Turrioni, A. Zlobin","doi":"10.3390/INSTRUMENTS4040028","DOIUrl":null,"url":null,"abstract":"A major focus of Nb$_3$Sn accelerator magnets is on significantly reducing or eliminating their training. Demonstration of an approach to increase the $C_p$ of Nb$_3$Sn magnets using new materials and technologies is very important both for particle accelerators and light sources. It would improve thermal stability and lead to much shorter magnet training, with substantial savings in machines' commissioning costs. Both Hypertech and Bruker-OST have attempted to introduce high-$C_p$ elements in their wire design. This paper includes a description of these advanced wires, the finite element model of their heat diffusion properties as compared with the standard wires, and whenever available, a comparison between the minimum quench energy (MQE) calculated by the model and actual MQE measurements on wires.","PeriodicalId":8436,"journal":{"name":"arXiv: Accelerator Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/INSTRUMENTS4040028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A major focus of Nb$_3$Sn accelerator magnets is on significantly reducing or eliminating their training. Demonstration of an approach to increase the $C_p$ of Nb$_3$Sn magnets using new materials and technologies is very important both for particle accelerators and light sources. It would improve thermal stability and lead to much shorter magnet training, with substantial savings in machines' commissioning costs. Both Hypertech and Bruker-OST have attempted to introduce high-$C_p$ elements in their wire design. This paper includes a description of these advanced wires, the finite element model of their heat diffusion properties as compared with the standard wires, and whenever available, a comparison between the minimum quench energy (MQE) calculated by the model and actual MQE measurements on wires.
高cp Nb3Sn复合超导导线中的热扩散
Nb$_3$Sn加速器磁体的一个主要焦点是显著减少或消除它们的训练。演示的方法提高Nb的C_p美元美元美元Sn磁铁使用新材料和技术是非常重要的对于粒子加速器和光源。这将提高热稳定性,缩短磁体训练时间,大大节省机器的调试成本。Hypertech和Bruker-OST都试图在他们的电线设计中引入高$C_p$元素。本文包括对这些先进导线的描述,与标准导线比较其热扩散特性的有限元模型,以及在可用的情况下,将模型计算的最小淬火能量(MQE)与导线的实际MQE测量值进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信