Numerical solution of the variational PDEs arising in optimal control theory

IF 2.5 3区 数学 Q1 MATHEMATICS, APPLIED
V. Costanza, M. I. Troparevsky, P. Rivadeneira
{"title":"Numerical solution of the variational PDEs arising in optimal control theory","authors":"V. Costanza, M. I. Troparevsky, P. Rivadeneira","doi":"10.1590/S1807-03022012000100003","DOIUrl":null,"url":null,"abstract":"An iterative method based on Picard's approach to ODEs' initial-value problems is proposed to solve first-order quasilinear PDEs with matrix-valued unknowns, in particular, the recently discovered variational PDEs for the missing boundary values in Hamilton equations of optimal control. As illustrations the iterative numerical solutions are checked against the analytical solutions to some examples arising from optimal control problems for nonlinear systems and regular Lagrangians in finite dimension, and against the numerical solution obtained through standard mathematical software. An application to the (n + 1)-dimensional variational PDEs associated with the n-dimensional finite-horizon time-variant linear-quadratic problem is discussed, due to the key role the LQR plays in two-degrees-of freedom control strategies for nonlinear systems with generalized costs. Mathematical subject classification: Primary: 35F30; Secondary: 93C10.","PeriodicalId":50649,"journal":{"name":"Computational & Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1590/S1807-03022012000100003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An iterative method based on Picard's approach to ODEs' initial-value problems is proposed to solve first-order quasilinear PDEs with matrix-valued unknowns, in particular, the recently discovered variational PDEs for the missing boundary values in Hamilton equations of optimal control. As illustrations the iterative numerical solutions are checked against the analytical solutions to some examples arising from optimal control problems for nonlinear systems and regular Lagrangians in finite dimension, and against the numerical solution obtained through standard mathematical software. An application to the (n + 1)-dimensional variational PDEs associated with the n-dimensional finite-horizon time-variant linear-quadratic problem is discussed, due to the key role the LQR plays in two-degrees-of freedom control strategies for nonlinear systems with generalized costs. Mathematical subject classification: Primary: 35F30; Secondary: 93C10.
最优控制理论中变分偏微分方程的数值解
提出了一种基于Picard初始值问题的迭代方法,用于求解一阶矩阵值未知的拟线性偏微分方程,特别是最近发现的最优控制Hamilton方程中缺失边值的变分偏微分方程。作为说明,将迭代数值解与有限维非线性系统和正则拉格朗日最优控制问题的解析解以及通过标准数学软件得到的数值解进行了比较。由于LQR在具有广义代价的非线性系统的两自由度控制策略中所起的关键作用,本文讨论了与n维有限视界时变线性二次问题相关的(n + 1)维变分偏微分方程的应用。数学学科分类:初级:35F30;二级:93 10大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational & Applied Mathematics
Computational & Applied Mathematics Mathematics-Computational Mathematics
CiteScore
4.50
自引率
11.50%
发文量
352
审稿时长
>12 weeks
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信