{"title":"Box-constrained optimization for minimax supervised learning","authors":"Cyprien Gilet, Susana Barbosa, L. Fillatre","doi":"10.1051/proc/202171109","DOIUrl":null,"url":null,"abstract":"In this paper, we present the optimization procedure for computing the discrete boxconstrained minimax classifier introduced in [1, 2]. Our approach processes discrete or beforehand discretized features. A box-constrained region defines some bounds for each class proportion independently. The box-constrained minimax classifier is obtained from the computation of the least favorable prior which maximizes the minimum empirical risk of error over the box-constrained region. After studying the discrete empirical Bayes risk over the probabilistic simplex, we consider a projected subgradient algorithm which computes the prior maximizing this concave multivariate piecewise affine function over a polyhedral domain. The convergence of our algorithm is established.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202171109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present the optimization procedure for computing the discrete boxconstrained minimax classifier introduced in [1, 2]. Our approach processes discrete or beforehand discretized features. A box-constrained region defines some bounds for each class proportion independently. The box-constrained minimax classifier is obtained from the computation of the least favorable prior which maximizes the minimum empirical risk of error over the box-constrained region. After studying the discrete empirical Bayes risk over the probabilistic simplex, we consider a projected subgradient algorithm which computes the prior maximizing this concave multivariate piecewise affine function over a polyhedral domain. The convergence of our algorithm is established.