Asymptotics of coupled solutions of the Kadomtsev–Petviashvili equation

Igor Anders
{"title":"Asymptotics of coupled solutions of the Kadomtsev–Petviashvili equation","authors":"Igor Anders","doi":"10.1016/S0764-4442(01)02070-5","DOIUrl":null,"url":null,"abstract":"<div><p>We determine a subset in <span><math><mtext>R</mtext><msup><mi></mi><mn>2</mn></msup></math></span> and a measure on this set which allow to construct coupled non-localized solutions of the KP-I equation, which are connected by the change of variables (<em>x</em>,<em>t</em>)↦(−<em>x</em>,−<em>t</em>), and split into asymptotic solitons as <em>t</em>→∞ in the neighbourhood of the leading edge of the solutions. The solitons corresponding to each of the solutions have different amplitudes and lines of constant phase.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 9","pages":"Pages 891-896"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02070-5","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201020705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We determine a subset in R2 and a measure on this set which allow to construct coupled non-localized solutions of the KP-I equation, which are connected by the change of variables (x,t)↦(−x,−t), and split into asymptotic solitons as t→∞ in the neighbourhood of the leading edge of the solutions. The solitons corresponding to each of the solutions have different amplitudes and lines of constant phase.

Kadomtsev-Petviashvili方程耦合解的渐近性
我们确定了R2中的一个子集和该集合上的一个测度,该子集允许构造KP-I方程的耦合非定域解,这些非定域解由变量(x,t)的变换(−x,−t)连接,并在解的前缘邻域中t→∞时分裂为渐近孤子。每个解对应的孤子具有不同的振幅和恒相线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信