Algorithmes de Hastings–Metropolis en interaction

Didier Chauveau, Pierre Vandekerkhove
{"title":"Algorithmes de Hastings–Metropolis en interaction","authors":"Didier Chauveau,&nbsp;Pierre Vandekerkhove","doi":"10.1016/S0764-4442(01)02147-4","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an adaptive MCMC method consisting of a set of parallel but non-Markovian and non i.i.d. discrete time processes, where each marginal uses the Hastings–Metropolis dynamic based on proposal densities depending on the other processes and learning from their past. We prove the geometric convergence of each marginal with a rate a.s. better than any arbitrary independent Hastings–Metropolis algorithm.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 9","pages":"Pages 881-884"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02147-4","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose an adaptive MCMC method consisting of a set of parallel but non-Markovian and non i.i.d. discrete time processes, where each marginal uses the Hastings–Metropolis dynamic based on proposal densities depending on the other processes and learning from their past. We prove the geometric convergence of each marginal with a rate a.s. better than any arbitrary independent Hastings–Metropolis algorithm.

我们提出了一种自适应MCMC方法,该方法由一组并行但非马尔可夫和非i - id离散时间过程组成,其中每个边缘使用基于建议密度的Hastings-Metropolis动态,依赖于其他过程并从它们的过去学习。我们证明了每个边缘的几何收敛性,其收敛速度优于任意独立的Hastings-Metropolis算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信