Completely random measures and Lévy bases in free probability

Francesca Collet, F. Leisen, S. Thorbjørnsen
{"title":"Completely random measures and Lévy bases in free probability","authors":"Francesca Collet, F. Leisen, S. Thorbjørnsen","doi":"10.1214/21-EJP620","DOIUrl":null,"url":null,"abstract":"This paper develops a theory for completely random measures in the framework of free probability. A general existence result for free completely random measures is established, and in analogy to the classical work of Kingman it is proved that such random measures can be decomposed into the sum of a purely atomic part and a (freely) infinitely divisible part. The latter part (termed a free Levy basis) is studied in detail in terms of the free Levy-Khintchine representation and a theory parallel to the classical work of Rajput and Rosinski is developed. Finally a Levy-Ito type decomposition for general free Levy bases is established.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-EJP620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a theory for completely random measures in the framework of free probability. A general existence result for free completely random measures is established, and in analogy to the classical work of Kingman it is proved that such random measures can be decomposed into the sum of a purely atomic part and a (freely) infinitely divisible part. The latter part (termed a free Levy basis) is studied in detail in terms of the free Levy-Khintchine representation and a theory parallel to the classical work of Rajput and Rosinski is developed. Finally a Levy-Ito type decomposition for general free Levy bases is established.
完全随机的测量和自由概率的lsamvy基数
本文在自由概率的框架下发展了一个完全随机测度的理论。建立了自由完全随机测度的一般存在性结果,并类比Kingman的经典工作,证明了这种随机测度可以分解为一个纯原子部分和一个(自由)无限可分部分的和。后一部分(称为自由Levy基)在自由Levy- khintchine表示的基础上进行了详细的研究,并发展了一个与Rajput和Rosinski的经典工作平行的理论。最后建立了一般自由列维基的Levy- ito型分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信