{"title":"Trends in low power digital system-on-chip designs","authors":"R. Saleh, G. Lim, T. Kadowaki, K. Uchiyama","doi":"10.1109/ISQED.2002.996775","DOIUrl":null,"url":null,"abstract":"A study of the future trends in low-power System-on-Chip (SoC) designs is presented, based on the recently announced ITRS-2001 technology characteristics for both high-performance and low-power devices from 2001 to 2016. We forecast the logic/memory composition of a reference low-power PDA design with an area constraint of 1 cm/sup 2/ using both a bottom-up, power dissipation-constrained chip model and a top-down, design resource-constrained model. Together, these analyses indicate that without accelerated improvements in both chip design productivity and leakage power management, future SoC designs will be comprised of 80-90% memory, with the remaining logic blocks composed of special-purpose reusable IP cores, and a smaller fraction of the chip containing newly designed logic.","PeriodicalId":20510,"journal":{"name":"Proceedings International Symposium on Quality Electronic Design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2002.996775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
A study of the future trends in low-power System-on-Chip (SoC) designs is presented, based on the recently announced ITRS-2001 technology characteristics for both high-performance and low-power devices from 2001 to 2016. We forecast the logic/memory composition of a reference low-power PDA design with an area constraint of 1 cm/sup 2/ using both a bottom-up, power dissipation-constrained chip model and a top-down, design resource-constrained model. Together, these analyses indicate that without accelerated improvements in both chip design productivity and leakage power management, future SoC designs will be comprised of 80-90% memory, with the remaining logic blocks composed of special-purpose reusable IP cores, and a smaller fraction of the chip containing newly designed logic.