Machine learning methods for toxic comment classification: a systematic review

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
Darko Androcec
{"title":"Machine learning methods for toxic comment classification: a systematic review","authors":"Darko Androcec","doi":"10.2478/ausi-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract Nowadays users leave numerous comments on different social networks, news portals, and forums. Some of the comments are toxic or abusive. Due to numbers of comments, it is unfeasible to manually moderate them, so most of the systems use some kind of automatic discovery of toxicity using machine learning models. In this work, we performed a systematic review of the state-of-the-art in toxic comment classification using machine learning methods. We extracted data from 31 selected primary relevant studies. First, we have investigated when and where the papers were published and their maturity level. In our analysis of every primary study we investigated: data set used, evaluation metric, used machine learning methods, classes of toxicity, and comment language. We finish our work with comprehensive list of gaps in current research and suggestions for future research themes related to online toxic comment classification problem.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"143 1","pages":"205 - 216"},"PeriodicalIF":0.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2020-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 14

Abstract

Abstract Nowadays users leave numerous comments on different social networks, news portals, and forums. Some of the comments are toxic or abusive. Due to numbers of comments, it is unfeasible to manually moderate them, so most of the systems use some kind of automatic discovery of toxicity using machine learning models. In this work, we performed a systematic review of the state-of-the-art in toxic comment classification using machine learning methods. We extracted data from 31 selected primary relevant studies. First, we have investigated when and where the papers were published and their maturity level. In our analysis of every primary study we investigated: data set used, evaluation metric, used machine learning methods, classes of toxicity, and comment language. We finish our work with comprehensive list of gaps in current research and suggestions for future research themes related to online toxic comment classification problem.
有毒评论分类的机器学习方法:系统综述
如今,用户在不同的社交网络、新闻门户和论坛上留下了大量的评论。有些评论是有害的或辱骂的。由于评论数量众多,手动调节它们是不可行的,因此大多数系统使用某种使用机器学习模型的自动发现毒性。在这项工作中,我们使用机器学习方法对最新的有毒评论分类进行了系统回顾。我们从31个选定的主要相关研究中提取数据。首先,我们调查了论文发表的时间和地点以及它们的成熟度。在我们对所调查的每一项主要研究的分析中:使用的数据集、评估指标、使用的机器学习方法、毒性类别和评论语言。我们完成了我们的工作,全面列出了当前研究中的差距,并建议未来的研究主题与在线有毒评论分类问题有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信