A Fixed-Parameter Approach for Weighted Cluster Editing

Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, A. Truß
{"title":"A Fixed-Parameter Approach for Weighted Cluster Editing","authors":"Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, A. Truß","doi":"10.1142/9781848161092_0023","DOIUrl":null,"url":null,"abstract":"Clustering objects with respect to a given similarity or distance measure is a problem often encountered in computational biology. Several well-known clustering algorithms are based on transforming the input matrix into a weighted graph although the resulting WEIGHTED CLUSTER EDITING problem is computationally hard: here, we transform the input graph into a disjoint union of cliques such that the sum of weights of all modified edges is minimized. We present fixed-parameter algorithms for this problem which guarantee to find an optimal solution in provable worst-case running time. We introduce a new data reduction operation (merging vertices) that has no counterpart in the unweighted case and strongly cuts down running times in practice. We have applied our algorithms to both artificial and biological data. Despite the complexity of the problem, our method often allows exact computation of optimal solutions in reasonable running time.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"35 1","pages":"211-220"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848161092_0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Clustering objects with respect to a given similarity or distance measure is a problem often encountered in computational biology. Several well-known clustering algorithms are based on transforming the input matrix into a weighted graph although the resulting WEIGHTED CLUSTER EDITING problem is computationally hard: here, we transform the input graph into a disjoint union of cliques such that the sum of weights of all modified edges is minimized. We present fixed-parameter algorithms for this problem which guarantee to find an optimal solution in provable worst-case running time. We introduce a new data reduction operation (merging vertices) that has no counterpart in the unweighted case and strongly cuts down running times in practice. We have applied our algorithms to both artificial and biological data. Despite the complexity of the problem, our method often allows exact computation of optimal solutions in reasonable running time.
加权聚类编辑的一种固定参数方法
根据给定的相似性或距离度量对对象进行聚类是计算生物学中经常遇到的问题。一些著名的聚类算法是基于将输入矩阵转换为加权图的,尽管由此产生的加权聚类编辑问题在计算上很困难:在这里,我们将输入图转换为团的不相交并,以便所有修改边的权值之和最小。针对这一问题,提出了固定参数算法,保证在可证明的最坏情况运行时间内找到最优解。我们引入了一种新的数据约简操作(合并顶点),它在未加权的情况下没有对应的操作,并且在实践中大大减少了运行时间。我们已经将我们的算法应用于人工和生物数据。尽管问题很复杂,但我们的方法通常可以在合理的运行时间内精确计算出最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信