Reduced-direction methods with feasible points in nonlinear programming

V.S. Izhutkin, M.Yu. Kokurin
{"title":"Reduced-direction methods with feasible points in nonlinear programming","authors":"V.S. Izhutkin,&nbsp;M.Yu. Kokurin","doi":"10.1016/0041-5553(90)90025-N","DOIUrl":null,"url":null,"abstract":"<div><p>An approach to the construction of feasible direction type methods of nonlinear programming is proposed. The approach relies on linearization of the active constraints, which reduces the problem of choosing a direction of descent of the objective function inside the feasible region to an unconstrained direction-choosing problem for an auxiliary function in a lower-dimensional space. The approach is developed for problems with inequality constraints and extended to problems with both inequality and equality constraints.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 1","pages":"Pages 159-169"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90025-N","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/004155539090025N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An approach to the construction of feasible direction type methods of nonlinear programming is proposed. The approach relies on linearization of the active constraints, which reduces the problem of choosing a direction of descent of the objective function inside the feasible region to an unconstrained direction-choosing problem for an auxiliary function in a lower-dimensional space. The approach is developed for problems with inequality constraints and extended to problems with both inequality and equality constraints.

非线性规划中可行点的约简方向方法
提出了一种构造可行方向型非线性规划方法的方法。该方法基于主动约束的线性化,将目标函数在可行域内的下降方向选择问题简化为辅助函数在低维空间中的无约束方向选择问题。该方法适用于具有不等式约束的问题,并推广到同时具有不等式约束和相等约束的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信