A study on mild solutions for multi-term time fractional measure differential equations

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Haide Gou, Y. Jia
{"title":"A study on mild solutions for multi-term time fractional measure differential equations","authors":"Haide Gou, Y. Jia","doi":"10.1080/00207160.2023.2239943","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the existence and uniqueness of the S-asymptotically ω-periodic mild solutions to a class of multi-term time-fractional measure differential equations with initial conditions in Banach spaces. Firstly, we look for a suitable concept of S-asymptotically ω-periodic mild solution to our concerned problem, by means of the Laplace transform and -resolvent family . Secondly, the existence of S-asymptotically ω-periodic mild solutions for the mentioned system is obtained by utilizing regulated functions and fixed point theorem. Finally, as the application of abstract results, an example is given to illustrate our main results.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":"69 1","pages":"1896 - 1917"},"PeriodicalIF":1.7000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00207160.2023.2239943","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the existence and uniqueness of the S-asymptotically ω-periodic mild solutions to a class of multi-term time-fractional measure differential equations with initial conditions in Banach spaces. Firstly, we look for a suitable concept of S-asymptotically ω-periodic mild solution to our concerned problem, by means of the Laplace transform and -resolvent family . Secondly, the existence of S-asymptotically ω-periodic mild solutions for the mentioned system is obtained by utilizing regulated functions and fixed point theorem. Finally, as the application of abstract results, an example is given to illustrate our main results.
多项时间分数测度微分方程温和解的研究
本文研究了Banach空间中一类具有初始条件的多项时间分数测度微分方程的s渐近ω-周期温和解的存在唯一性。首先,我们利用拉普拉斯变换和-可解族寻找一个适合于我们所关心问题的s渐近ω-周期温和解的概念。其次,利用调节函数和不动点定理,得到了该系统s -渐近ω-周期温和解的存在性;最后,作为抽象结果的应用,给出了一个例子来说明我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
72
审稿时长
5 months
期刊介绍: International Journal of Computer Mathematics (IJCM) is a world-leading journal serving the community of researchers in numerical analysis and scientific computing from academia to industry. IJCM publishes original research papers of high scientific value in fields of computational mathematics with profound applications to science and engineering. IJCM welcomes papers on the analysis and applications of innovative computational strategies as well as those with rigorous explorations of cutting-edge techniques and concerns in computational mathematics. Topics IJCM considers include: • Numerical solutions of systems of partial differential equations • Numerical solution of systems or of multi-dimensional partial differential equations • Theory and computations of nonlocal modelling and fractional partial differential equations • Novel multi-scale modelling and computational strategies • Parallel computations • Numerical optimization and controls • Imaging algorithms and vision configurations • Computational stochastic processes and inverse problems • Stochastic partial differential equations, Monte Carlo simulations and uncertainty quantification • Computational finance and applications • Highly vibrant and robust algorithms, and applications in modern industries, including but not limited to multi-physics, economics and biomedicine. Papers discussing only variations or combinations of existing methods without significant new computational properties or analysis are not of interest to IJCM. Please note that research in the development of computer systems and theory of computing are not suitable for submission to IJCM. Please instead consider International Journal of Computer Mathematics: Computer Systems Theory (IJCM: CST) for your manuscript. Please note that any papers submitted relating to these fields will be transferred to IJCM:CST. Please ensure you submit your paper to the correct journal to save time reviewing and processing your work. Papers developed from Conference Proceedings Please note that papers developed from conference proceedings or previously published work must contain at least 40% new material and significantly extend or improve upon earlier research in order to be considered for IJCM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信