FOCUS: A Recommender System for Mining API Function Calls and Usage Patterns

P. Nguyen, Juri Di Rocco, D. D. Ruscio, Lina Ochoa, Thomas Degueule, M. D. Penta
{"title":"FOCUS: A Recommender System for Mining API Function Calls and Usage Patterns","authors":"P. Nguyen, Juri Di Rocco, D. D. Ruscio, Lina Ochoa, Thomas Degueule, M. D. Penta","doi":"10.1109/ICSE.2019.00109","DOIUrl":null,"url":null,"abstract":"Software developers interact with APIs on a daily basis and, therefore, often face the need to learn how to use new APIs suitable for their purposes. Previous work has shown that recommending usage patterns to developers facilitates the learning process. Current approaches to usage pattern recommendation, however, still suffer from high redundancy and poor run-time performance. In this paper, we reformulate the problem of usage pattern recommendation in terms of a collaborative-filtering recommender system. We present a new tool, FOCUS, which mines open-source project repositories to recommend API method invocations and usage patterns by analyzing how APIs are used in projects similar to the current project. We evaluate FOCUS on a large number of Java projects extracted from GitHub and Maven Central and find that it outperforms the state-of-the-art approach PAM with regards to success rate, accuracy, and execution time. Results indicate the suitability of context-aware collaborative-filtering recommender systems to provide API usage patterns.","PeriodicalId":6736,"journal":{"name":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","volume":"1 1","pages":"1050-1060"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2019.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

Software developers interact with APIs on a daily basis and, therefore, often face the need to learn how to use new APIs suitable for their purposes. Previous work has shown that recommending usage patterns to developers facilitates the learning process. Current approaches to usage pattern recommendation, however, still suffer from high redundancy and poor run-time performance. In this paper, we reformulate the problem of usage pattern recommendation in terms of a collaborative-filtering recommender system. We present a new tool, FOCUS, which mines open-source project repositories to recommend API method invocations and usage patterns by analyzing how APIs are used in projects similar to the current project. We evaluate FOCUS on a large number of Java projects extracted from GitHub and Maven Central and find that it outperforms the state-of-the-art approach PAM with regards to success rate, accuracy, and execution time. Results indicate the suitability of context-aware collaborative-filtering recommender systems to provide API usage patterns.
重点:挖掘API函数调用和使用模式的推荐系统
软件开发人员每天都要与api进行交互,因此,经常需要学习如何使用适合其目的的新api。以前的工作表明,向开发人员推荐使用模式可以促进学习过程。但是,当前的使用模式推荐方法仍然存在高冗余和运行时性能差的问题。在本文中,我们从协同过滤推荐系统的角度重新表述了使用模式推荐问题。我们提出了一个新工具FOCUS,它通过分析API在与当前项目相似的项目中的使用情况,挖掘开源项目存储库,从而推荐API方法调用和使用模式。我们对从GitHub和Maven Central中提取的大量Java项目进行了评估,发现它在成功率、准确性和执行时间方面优于最先进的PAM方法。结果表明上下文感知协同过滤推荐系统提供API使用模式的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信