Person Re-Identification Ranking Optimisation by Discriminant Context Information Analysis

Jorge García, N. Martinel, C. Micheloni, Alfredo Gardel Vicente
{"title":"Person Re-Identification Ranking Optimisation by Discriminant Context Information Analysis","authors":"Jorge García, N. Martinel, C. Micheloni, Alfredo Gardel Vicente","doi":"10.1109/ICCV.2015.154","DOIUrl":null,"url":null,"abstract":"Person re-identification is an open and challenging problem in computer vision. Existing re-identification approaches focus on optimal methods for features matching (e.g., metric learning approaches) or study the inter-camera transformations of such features. These methods hardly ever pay attention to the problem of visual ambiguities shared between the first ranks. In this paper, we focus on such a problem and introduce an unsupervised ranking optimization approach based on discriminant context information analysis. The proposed approach refines a given initial ranking by removing the visual ambiguities common to first ranks. This is achieved by analyzing their content and context information. Extensive experiments on three publicly available benchmark datasets and different baseline methods have been conducted. Results demonstrate a remarkable improvement in the first positions of the ranking. Regardless of the selected dataset, state-of-the-art methods are strongly outperformed by our method.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"6 1","pages":"1305-1313"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

Person re-identification is an open and challenging problem in computer vision. Existing re-identification approaches focus on optimal methods for features matching (e.g., metric learning approaches) or study the inter-camera transformations of such features. These methods hardly ever pay attention to the problem of visual ambiguities shared between the first ranks. In this paper, we focus on such a problem and introduce an unsupervised ranking optimization approach based on discriminant context information analysis. The proposed approach refines a given initial ranking by removing the visual ambiguities common to first ranks. This is achieved by analyzing their content and context information. Extensive experiments on three publicly available benchmark datasets and different baseline methods have been conducted. Results demonstrate a remarkable improvement in the first positions of the ranking. Regardless of the selected dataset, state-of-the-art methods are strongly outperformed by our method.
基于判别上下文信息分析的人物再识别排序优化
人物再识别是计算机视觉领域的一个开放性和挑战性问题。现有的再识别方法侧重于特征匹配的最佳方法(例如度量学习方法)或研究这些特征的相机间转换。这些方法几乎没有注意到第一排之间共享的视觉歧义问题。本文针对这一问题,提出了一种基于判别上下文信息分析的无监督排序优化方法。该方法通过消除常见的视觉模糊性来改进给定的初始排序。这可以通过分析它们的内容和上下文信息来实现。在三个公开的基准数据集和不同的基线方法上进行了大量的实验。结果显示,排名靠前的国家有了显著的进步。无论选择的数据集是什么,最先进的方法都明显优于我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信