New techniques to curtail the tail latency in stream processing systems

Guangxiang Du, Indranil Gupta
{"title":"New techniques to curtail the tail latency in stream processing systems","authors":"Guangxiang Du, Indranil Gupta","doi":"10.1145/2955193.2955206","DOIUrl":null,"url":null,"abstract":"This paper presents a series of novel techniques for reducing the tail latency in stream processing systems like Apache Storm. Concretely, we present three mechanisms: (1) adaptive timeout coupled with selective replay to catch straggler tuples; (2) shared queues among different tasks of the same operator to reduce overall queueing delay; (3) latency feedback-based load balancing, intended to mitigate heterogenous scenarios. We have implemented these techniques in Apache Storm, and present experimental results using sets of micro-benchmarks as well as two topologies from Yahoo! Inc. Our results show improvement in tail latency up to 72.9%.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"38 1","pages":"7:1-7:6"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2955193.2955206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a series of novel techniques for reducing the tail latency in stream processing systems like Apache Storm. Concretely, we present three mechanisms: (1) adaptive timeout coupled with selective replay to catch straggler tuples; (2) shared queues among different tasks of the same operator to reduce overall queueing delay; (3) latency feedback-based load balancing, intended to mitigate heterogenous scenarios. We have implemented these techniques in Apache Storm, and present experimental results using sets of micro-benchmarks as well as two topologies from Yahoo! Inc. Our results show improvement in tail latency up to 72.9%.
减少流处理系统尾部延迟的新技术
本文提出了一系列减少流处理系统(如Apache Storm)尾部延迟的新技术。具体来说,我们提出了三种机制:(1)自适应超时与选择性重放相结合来捕获离散元组;(2)在同一运营商的不同任务之间共享队列,降低整体排队延迟;(3)基于延迟反馈的负载均衡,旨在缓解异构场景。我们已经在Apache Storm中实现了这些技术,并展示了使用微基准测试集和雅虎的两种拓扑的实验结果。公司。我们的结果表明,尾部延迟提高了72.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信