Integrable reductions of the dressing chain

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. Evripidou, P. Kassotakis, P. Vanhaecke
{"title":"Integrable reductions of the dressing chain","authors":"C. Evripidou, P. Kassotakis, P. Vanhaecke","doi":"10.3934/jcd.2019014","DOIUrl":null,"url":null,"abstract":"In this paper we construct a family of integrable reductions of the dressing chain, described in its Lotka-Volterra form. For each $k,n\\in\\mathbb N$ with $n\\geqslant 2k+1$ we obtain a Lotka-Volterra system $\\hbox{LV}_b(n,k)$ on $\\mathbb R^n$ which is a deformation of the Lotka-Volterra system $\\hbox{LV}(n,k)$, which is itself an integrable reduction of the $m$-dimensional Bogoyavlenskij-Itoh system $\\hbox{LV}(2m+1,m)$, where $m=n-k-1$. We prove that $\\hbox{LV}_b(n,k)$ is both Liouville and non-commutative integrable, with rational first integrals which are deformations of the rational integrals of $\\hbox{LV}(n,k)$. We also construct a family of discretizations of $\\hbox{LV}_b(n,0)$, including its Kahan discretization, and we show that these discretizations are also Liouville and superintegrable.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2019014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we construct a family of integrable reductions of the dressing chain, described in its Lotka-Volterra form. For each $k,n\in\mathbb N$ with $n\geqslant 2k+1$ we obtain a Lotka-Volterra system $\hbox{LV}_b(n,k)$ on $\mathbb R^n$ which is a deformation of the Lotka-Volterra system $\hbox{LV}(n,k)$, which is itself an integrable reduction of the $m$-dimensional Bogoyavlenskij-Itoh system $\hbox{LV}(2m+1,m)$, where $m=n-k-1$. We prove that $\hbox{LV}_b(n,k)$ is both Liouville and non-commutative integrable, with rational first integrals which are deformations of the rational integrals of $\hbox{LV}(n,k)$. We also construct a family of discretizations of $\hbox{LV}_b(n,0)$, including its Kahan discretization, and we show that these discretizations are also Liouville and superintegrable.
修整链的可积化简
本文以Lotka-Volterra形式构造了修整链的可积约简族。对于每个$k,n\in\mathbb N$和$n\geqslant 2k+1$,我们得到一个Lotka-Volterra系统$\hbox{LV}_b(n,k)$在$\mathbb R^n$上,它是Lotka-Volterra系统$\hbox{LV}(n,k)$的变形,它本身是$m$维Bogoyavlenskij-Itoh系统$\hbox{LV}(2m+1,m)$的可积化简,其中$m=n-k-1$。我们证明了$\hbox{LV}_b(n,k)$既是刘维尔可积的,也是非交换可积的,它的有理第一积分是$\hbox{LV}(n,k)$的有理积分的变形。我们还构造了$\hbox{LV}_b(n,0)$的离散化族,包括它的Kahan离散化,并证明了这些离散化也是Liouville和超可积的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信