Laurenţiu Cătălin Hinoveanu, Fabrizio Leisen, Cristiano Villa
{"title":"A loss-based prior for Gaussian graphical models","authors":"Laurenţiu Cătălin Hinoveanu, Fabrizio Leisen, Cristiano Villa","doi":"10.1111/anzs.12307","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Gaussian graphical models play an important role in various areas such as genetics, finance, statistical physics and others. They are a powerful modelling tool, which allows one to describe the relationships among the variables of interest. From the Bayesian perspective, there are two sources of randomness: one is related to the multivariate distribution and the quantities that may parametrise the model, and the other has to do with the underlying graph, <i>G</i>, equivalent to describing the conditional independence structure of the model under consideration. In this paper, we propose a prior on <i>G</i> based on two loss components. One considers the loss in information one would incur in selecting the wrong graph, while the second penalises for large number of edges, favouring sparsity. We illustrate the prior on simulated data and on real datasets, and compare the results with other priors on <i>G</i> used in the literature. Moreover, we present a default choice of the prior as well as discuss how it can be calibrated so as to reflect available prior information.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/anzs.12307","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12307","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Gaussian graphical models play an important role in various areas such as genetics, finance, statistical physics and others. They are a powerful modelling tool, which allows one to describe the relationships among the variables of interest. From the Bayesian perspective, there are two sources of randomness: one is related to the multivariate distribution and the quantities that may parametrise the model, and the other has to do with the underlying graph, G, equivalent to describing the conditional independence structure of the model under consideration. In this paper, we propose a prior on G based on two loss components. One considers the loss in information one would incur in selecting the wrong graph, while the second penalises for large number of edges, favouring sparsity. We illustrate the prior on simulated data and on real datasets, and compare the results with other priors on G used in the literature. Moreover, we present a default choice of the prior as well as discuss how it can be calibrated so as to reflect available prior information.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.