A New RSA Variant Based on Elliptic Curves

Maher Boudabra, Abderrahmane Nitaj
{"title":"A New RSA Variant Based on Elliptic Curves","authors":"Maher Boudabra, Abderrahmane Nitaj","doi":"10.3390/cryptography7030037","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new scheme based on ephemeral elliptic curves over a finite ring with an RSA modulus. The new scheme is a variant of both the RSA and the KMOV cryptosystems and can be used for both signature and encryption. We study the security of the new scheme and show that it is immune to factorization attacks, discrete-logarithm-problem attacks, sum-of-two-squares attacks, sum-of-four-squares attacks, isomorphism attacks, and homomorphism attacks. Moreover, we show that the private exponents can be much smaller than the ordinary exponents in RSA and KMOV, which makes the decryption phase in the new scheme more efficient.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"2 1","pages":"1299"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new scheme based on ephemeral elliptic curves over a finite ring with an RSA modulus. The new scheme is a variant of both the RSA and the KMOV cryptosystems and can be used for both signature and encryption. We study the security of the new scheme and show that it is immune to factorization attacks, discrete-logarithm-problem attacks, sum-of-two-squares attacks, sum-of-four-squares attacks, isomorphism attacks, and homomorphism attacks. Moreover, we show that the private exponents can be much smaller than the ordinary exponents in RSA and KMOV, which makes the decryption phase in the new scheme more efficient.
一种基于椭圆曲线的RSA新变体
本文提出了一种基于具有RSA模的有限环上的暂态椭圆曲线的新方案。新方案是RSA和KMOV密码系统的变体,可用于签名和加密。我们研究了新方案的安全性,并证明了它对分解攻击、离散对数问题攻击、二平方和攻击、四平方和攻击、同构攻击和同态攻击具有免疫力。此外,我们证明了私有指数可以比RSA和KMOV中的普通指数小得多,这使得新方案中的解密阶段更加高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信