{"title":"Low-cost run-time diagnosis of hard delay faults in the functional units of a microprocessor","authors":"S. Ozev, Daniel J. Sorin, Mahmut Yilmaz","doi":"10.1109/ICCD.2007.4601919","DOIUrl":null,"url":null,"abstract":"This paper addresses the run-time diagnosis of delay faults in functional units of microprocessors. Despite the popularity of the stuck-at fault model, it is no longer the only relevant fault model. The delay fault model - which assumes that the faulty circuit element gets the correct value but that this value arrives too late - encompasses many of the actual in-field wearout faults in modern microprocessors. In-field wearout faults, such as time-dependent dielectric breakdown and electromigration, cause signal propagation delays which may be missed during production test time. These defects progress exponentially over time, potentially causing a catastrophic failure. Our goal is to diagnose hard delay faults (i.e., identify them as hard faults, not transients) during run-time before they lead to catastrophic chip failures. Results show that we can diagnose all injected delay faults and that prior diagnosis mechanisms, which target only stuck-at faults, miss the majority of them.","PeriodicalId":6306,"journal":{"name":"2007 25th International Conference on Computer Design","volume":"25 1","pages":"317-324"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 25th International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2007.4601919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper addresses the run-time diagnosis of delay faults in functional units of microprocessors. Despite the popularity of the stuck-at fault model, it is no longer the only relevant fault model. The delay fault model - which assumes that the faulty circuit element gets the correct value but that this value arrives too late - encompasses many of the actual in-field wearout faults in modern microprocessors. In-field wearout faults, such as time-dependent dielectric breakdown and electromigration, cause signal propagation delays which may be missed during production test time. These defects progress exponentially over time, potentially causing a catastrophic failure. Our goal is to diagnose hard delay faults (i.e., identify them as hard faults, not transients) during run-time before they lead to catastrophic chip failures. Results show that we can diagnose all injected delay faults and that prior diagnosis mechanisms, which target only stuck-at faults, miss the majority of them.