T. Bures, V. Matena, R. Mirandola, Lorenzo Pagliari, Catia Trubiani
{"title":"Performance Modelling of Smart Cyber-Physical Systems","authors":"T. Bures, V. Matena, R. Mirandola, Lorenzo Pagliari, Catia Trubiani","doi":"10.1145/3185768.3186306","DOIUrl":null,"url":null,"abstract":"Context: the dynamic nature of complex Cyber-Physical Systems (CPS) introduces new research challenges since they need to smartly self-adapt to changing situations in their environment. This triggers the usage of methodologies that keep track of changes and raise alarms whether extra-functional requirements (e.g., safety, reliability, performance) are violated. Objective: this paper investigates the usage of software performance engineering techniques as support to provide a model-based performance evaluation of smart CPS. The goal is to understand at which extent performance models, specifically Queueing Networks (QN), are suitable to represent these dynamic scenarios. Method and Results: we evaluate the performance characteristics of a smart parking application where cars need to communicate with hot-spots to find an empty spot to park. Through QN we are able to efficiently derive performance predictions that are compared with long-run simulations, and the relative error of model-based analysis results is no larger than 10% when transient or congestion states are discarded. Conclusion: the usage of performance models is promising in this domain and our goal is to experiment further performance models in other CPS case studies to assess their effectiveness.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3185768.3186306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Context: the dynamic nature of complex Cyber-Physical Systems (CPS) introduces new research challenges since they need to smartly self-adapt to changing situations in their environment. This triggers the usage of methodologies that keep track of changes and raise alarms whether extra-functional requirements (e.g., safety, reliability, performance) are violated. Objective: this paper investigates the usage of software performance engineering techniques as support to provide a model-based performance evaluation of smart CPS. The goal is to understand at which extent performance models, specifically Queueing Networks (QN), are suitable to represent these dynamic scenarios. Method and Results: we evaluate the performance characteristics of a smart parking application where cars need to communicate with hot-spots to find an empty spot to park. Through QN we are able to efficiently derive performance predictions that are compared with long-run simulations, and the relative error of model-based analysis results is no larger than 10% when transient or congestion states are discarded. Conclusion: the usage of performance models is promising in this domain and our goal is to experiment further performance models in other CPS case studies to assess their effectiveness.