J. Agunsoye, S. I. Talabi, V. Aigbodion, A. Olumuyiwa
{"title":"Effects of Silica Ceramic Particle Sizes on the Properties of Recycled Polyethylene Composites","authors":"J. Agunsoye, S. I. Talabi, V. Aigbodion, A. Olumuyiwa","doi":"10.3968/J.ANS.1715787020130601.1630","DOIUrl":null,"url":null,"abstract":"Particulate filled polymeric composites are becoming attractive because of their wide applications and lower production cost. To evaluate the possibility of using waste silica based ceramic materials as reinforcing filler in recycled polyethylene (PE) composite, the effect of ceramic (PC) particle sizes on the mechanical, wear and thermal behaviours of polyethylene (PE) composites were investigated at (2wt% filler) and grain sizes (40µm-150µm). The wear behaviour was characterized using analysis of variance (ANOVA) and linear regression to determine the main and interactive effects of the process parameters such as speed, load and time on the wear behaviour of the fabricated PE-PC composites. Test results show that the decreasing the ceramic particles 150µm-40µm improved the mechanical, wear and thermal properties of the recycled polyethylene (PE) composites. Factorial design of the experiment can be successfully employed to describe the wear behavior of the samples and developed linear equation for predicting wear rate with in selected experimental conditions.","PeriodicalId":7348,"journal":{"name":"Advances in Natural Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3968/J.ANS.1715787020130601.1630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Particulate filled polymeric composites are becoming attractive because of their wide applications and lower production cost. To evaluate the possibility of using waste silica based ceramic materials as reinforcing filler in recycled polyethylene (PE) composite, the effect of ceramic (PC) particle sizes on the mechanical, wear and thermal behaviours of polyethylene (PE) composites were investigated at (2wt% filler) and grain sizes (40µm-150µm). The wear behaviour was characterized using analysis of variance (ANOVA) and linear regression to determine the main and interactive effects of the process parameters such as speed, load and time on the wear behaviour of the fabricated PE-PC composites. Test results show that the decreasing the ceramic particles 150µm-40µm improved the mechanical, wear and thermal properties of the recycled polyethylene (PE) composites. Factorial design of the experiment can be successfully employed to describe the wear behavior of the samples and developed linear equation for predicting wear rate with in selected experimental conditions.