Fairness and Discrimination in Retrieval and Recommendation

Michael D. Ekstrand, R. Burke, Fernando Diaz
{"title":"Fairness and Discrimination in Retrieval and Recommendation","authors":"Michael D. Ekstrand, R. Burke, Fernando Diaz","doi":"10.1145/3331184.3331380","DOIUrl":null,"url":null,"abstract":"Fairness and related concerns have become of increasing importance in a variety of AI and machine learning contexts. They are also highly relevant to information retrieval and related problems such as recommendation, as evidenced by the growing literature in SIGIR, FAT*, RecSys, and special sessions such as the FATREC workshop and the Fairness track at TREC 2019; however, translating algorithmic fairness constructs from classification, scoring, and even many ranking settings into information retrieval and recommendation scenarios is not a straightforward task. This tutorial will help to orient IR researchers to algorithmic fairness, understand how concepts do and do not translate from other settings, and provide an introduction to the growing literature on this topic.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Fairness and related concerns have become of increasing importance in a variety of AI and machine learning contexts. They are also highly relevant to information retrieval and related problems such as recommendation, as evidenced by the growing literature in SIGIR, FAT*, RecSys, and special sessions such as the FATREC workshop and the Fairness track at TREC 2019; however, translating algorithmic fairness constructs from classification, scoring, and even many ranking settings into information retrieval and recommendation scenarios is not a straightforward task. This tutorial will help to orient IR researchers to algorithmic fairness, understand how concepts do and do not translate from other settings, and provide an introduction to the growing literature on this topic.
检索与推荐中的公平与歧视
在各种人工智能和机器学习环境中,公平性和相关问题变得越来越重要。它们也与信息检索和推荐等相关问题高度相关,SIGIR、FAT*、RecSys中越来越多的文献以及FATREC研讨会和TREC 2019的公平专场等特别会议证明了这一点;然而,将算法公平性结构从分类、评分甚至许多排名设置转换为信息检索和推荐场景并不是一项简单的任务。本教程将帮助IR研究人员了解算法公平性,了解概念如何从其他设置中翻译和不翻译,并介绍关于该主题的日益增长的文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信