Detection of Package Edges in Distance Maps

E. Vasileva, Nenad Avramovski, Z. Ivanovski
{"title":"Detection of Package Edges in Distance Maps","authors":"E. Vasileva, Nenad Avramovski, Z. Ivanovski","doi":"10.23919/Eusipco47968.2020.9287558","DOIUrl":null,"url":null,"abstract":"This paper presents a CNN-based algorithm for detecting package edges in a scene represented with a distance map (range image), trained on a custom dataset of packaging scenarios. The proposed algorithm represents the basis for package recognition for automatic trailer loading/unloading. The main focus of this paper is designing a semantic segmentation CNN model capable of detecting different types of package edges in a distance map containing distance errors characteristic of Time-of-Flight (ToF) scanning, and differentiating box edges from edges belonging to other types of packaging objects (bags, irregular objects, etc.). The proposed CNN is optimized for training with a limited number of samples containing heavily imbalanced classes. Generating a binary mask of edges with 1-pixel thickness from the probability maps outputted from the CNN is achieved through a custom non-maximum suppression-based edge thinning algorithm. The proposed algorithm shows promising results in detecting box edges.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"24 1","pages":"600-604"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a CNN-based algorithm for detecting package edges in a scene represented with a distance map (range image), trained on a custom dataset of packaging scenarios. The proposed algorithm represents the basis for package recognition for automatic trailer loading/unloading. The main focus of this paper is designing a semantic segmentation CNN model capable of detecting different types of package edges in a distance map containing distance errors characteristic of Time-of-Flight (ToF) scanning, and differentiating box edges from edges belonging to other types of packaging objects (bags, irregular objects, etc.). The proposed CNN is optimized for training with a limited number of samples containing heavily imbalanced classes. Generating a binary mask of edges with 1-pixel thickness from the probability maps outputted from the CNN is achieved through a custom non-maximum suppression-based edge thinning algorithm. The proposed algorithm shows promising results in detecting box edges.
距离图中包边的检测
本文提出了一种基于cnn的算法,用于在包装场景的自定义数据集上训练的距离图(距离图像)表示的场景中检测包装边缘。该算法为拖车自动装卸货物的识别奠定了基础。本文的主要重点是设计一个语义分割CNN模型,该模型能够在包含飞行时间(ToF)扫描距离误差特征的距离图中检测不同类型的包装边缘,并将盒子边缘与属于其他类型包装物体(袋子、不规则物体等)的边缘区分开来。所提出的CNN针对有限数量的样本进行了优化,样本中包含严重不平衡的类别。通过自定义的基于非最大抑制的边缘细化算法,从CNN输出的概率图中生成厚度为1像素的边缘二进制掩码。该算法在检测盒边缘方面取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信