{"title":"Matching users and items across domains to improve the recommendation quality","authors":"Chung-Yi Li, Shou-de Lin","doi":"10.1145/2623330.2623657","DOIUrl":null,"url":null,"abstract":"Given two homogeneous rating matrices with some overlapped users/items whose mappings are unknown, this paper aims at answering two questions. First, can we identify the unknown mapping between the users and/or items? Second, can we further utilize the identified mappings to improve the quality of recommendation in either domain? Our solution integrates a latent space matching procedure and a refining process based on the optimization of prediction to identify the matching. Then, we further design a transfer-based method to improve the recommendation performance. Using both synthetic and real data, we have done extensive experiments given different real life scenarios to verify the effectiveness of our models. The code and other materials are available at http://www.csie.ntu.edu.tw/~r00922051/matching/","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73
Abstract
Given two homogeneous rating matrices with some overlapped users/items whose mappings are unknown, this paper aims at answering two questions. First, can we identify the unknown mapping between the users and/or items? Second, can we further utilize the identified mappings to improve the quality of recommendation in either domain? Our solution integrates a latent space matching procedure and a refining process based on the optimization of prediction to identify the matching. Then, we further design a transfer-based method to improve the recommendation performance. Using both synthetic and real data, we have done extensive experiments given different real life scenarios to verify the effectiveness of our models. The code and other materials are available at http://www.csie.ntu.edu.tw/~r00922051/matching/