Matching users and items across domains to improve the recommendation quality

Chung-Yi Li, Shou-de Lin
{"title":"Matching users and items across domains to improve the recommendation quality","authors":"Chung-Yi Li, Shou-de Lin","doi":"10.1145/2623330.2623657","DOIUrl":null,"url":null,"abstract":"Given two homogeneous rating matrices with some overlapped users/items whose mappings are unknown, this paper aims at answering two questions. First, can we identify the unknown mapping between the users and/or items? Second, can we further utilize the identified mappings to improve the quality of recommendation in either domain? Our solution integrates a latent space matching procedure and a refining process based on the optimization of prediction to identify the matching. Then, we further design a transfer-based method to improve the recommendation performance. Using both synthetic and real data, we have done extensive experiments given different real life scenarios to verify the effectiveness of our models. The code and other materials are available at http://www.csie.ntu.edu.tw/~r00922051/matching/","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

Given two homogeneous rating matrices with some overlapped users/items whose mappings are unknown, this paper aims at answering two questions. First, can we identify the unknown mapping between the users and/or items? Second, can we further utilize the identified mappings to improve the quality of recommendation in either domain? Our solution integrates a latent space matching procedure and a refining process based on the optimization of prediction to identify the matching. Then, we further design a transfer-based method to improve the recommendation performance. Using both synthetic and real data, we have done extensive experiments given different real life scenarios to verify the effectiveness of our models. The code and other materials are available at http://www.csie.ntu.edu.tw/~r00922051/matching/
跨域匹配用户和项目,提高推荐质量
给定两个齐次评价矩阵,其中一些用户/项目的映射是未知的,本文旨在回答两个问题。首先,我们能否识别用户和/或项目之间的未知映射?其次,我们能否进一步利用已识别的映射来提高两个领域的推荐质量?我们的解决方案集成了潜在空间匹配过程和基于预测优化的精炼过程来识别匹配。然后,我们进一步设计了一种基于迁移的方法来提高推荐性能。利用合成数据和真实数据,我们在不同的现实生活场景下进行了大量的实验,以验证我们模型的有效性。代码和其他材料可在http://www.csie.ntu.edu.tw/~r00922051/matching/上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信